Search results

1 – 6 of 6
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 4 March 2022

Lihui Wang, ZongLiang Chen and Wenxing Zhu

In path tracking, pure pursuit (PP) has great superiority due to its simple control. However, when in agricultural applications, the performance and accuracy of PP are not so…

472

Abstract

Purpose

In path tracking, pure pursuit (PP) has great superiority due to its simple control. However, when in agricultural applications, the performance and accuracy of PP are not so well; it cannot be tracked in time has slow convergence, and low tracking accuracy. Furthermore, in some severe driving scenarios, PP is insufficient to convey the effects of the tracking error. This paper aims to propose an autonomous driving controller to improve the PP model based on heading error rate (Improved PP-improved search strategy ant colony optimization [ISSACO]).

Design/methodology/approach

First, the heading error rate is added as the control method in the PP model. Second, the predicted heading error was selected as the objective function; the ISSACO is used to obtain the minimum value of the predicted heading error. A PP controller is integrated with the heading error rate by ISSACO to better deal with tracking error by trading off between PP and heading error rate. Third, the ISSACO was used to obtain the optimal values of PP and heading error rate weight. Finally, the error feedback adaptive dynamic adjustment of the improved algorithm is realized to reduce the convergence time and tracking error.

Findings

The proposed method was tested on a four-wheeled vehicle robot, and the effectiveness of its convergence was proved. Experiments show that the proposed method can effectively reduce the tracking error, increase convergence, then improve the robot’s working quality.

Originality/value

An adaptive improved PP path tracking control is proposed, which considers both heading error rate and parameter uncertainties. The new autonomous controller has a simple structure and is easy to implement. It can be adjusted according to the path tracking status to improve the adaptability of the system.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Access Restricted. View access options
Article
Publication date: 4 July 2022

Ying Zhao, Wei Chen, Zhuzhang Yang, Zongliang Li and Yong Wang

Risk factors related delay hinder the schedule performance of most construction projects in the world. It is a critical challenge to realize the advantages of prefabricated…

362

Abstract

Purpose

Risk factors related delay hinder the schedule performance of most construction projects in the world. It is a critical challenge to realize the advantages of prefabricated construction projects (PCPs) under the negative effect of schedule delay. This paper aims to propose an exhaustive list of risk factors impeding the progress of PCPs and evaluate the collected risk factors based on the cause–effect relations. The ultimate goal is to improve the understanding of the complex relations among various risk factors related delay in PCPs, and also offer managers a reference on aspect of schedule risk management.

Design/methodology/approach

This paper proposes a hybrid method of GT–DEMATEL–ISM, that is combing grounded theory, DEMATEL (decision-making trial and evaluation laboratory) and ISM (Interpretative Structural Modeling), to collect, evaluate and structure risk factors related delay for PCPs. The research procedure of this methodology is divided into three stages systematically involving qualitative and quantitative analysis. In the first stage, GT is utilized to implement qualitative analysis to collect the risk factors leading to schedule delay in PCPs. While, the quantitative analysis is to analyze and evaluate the collected risk factors based on the cause–effect relations in the next two stages evaluation by the DEMATEL focuses on quantifying the priority and intensity of the relations between factors. Additionally, ISM is employed to construct the hierarchical structure and graphically represent the pairwise relations between factors.

Findings

The outcome of qualitative investigation by grounded theory proposes a theoretical framework of risk factors related delay for PCPs. The framework contains three levels of category, namely, core category, main category and initial category and provides a list of risk factors related delay. Following this finding, evaluation results by the DEMATEL classify factors into cause and effect groups and determine 11 critical delay risk factors. Meanwhile, the findings show that risks referring to organizational management issue foremost impact the progress of PCPs. Furthermore, a systemic multilevel hierarchical structure model is visually constructed by ISM to present the pairwise linkages of critical factors. The model provides the risk transmission chains to map the spread path of delay impact in the system.

Originality/value

The contribution of the study involves twofold issues. Methodologically, this research proposes a hybrid method GT–DEMATEL–ISM used to identify and analyze factors for a complex system. It is also applicable to other fields facing similar problems that require collecting, evaluating and structuring certain elements as a whole in a comprehensive perspective. The theoretical contribution is to fill the relevant research gap of the existing body of knowledge. To the best knowledge of the authors, this paper is the first attempt to integrate qualitative and quantitative research for risk analysis related delay and take the insight into the whole process of PCPs covering off-site manufacture and on-site construction. Furthermore, the analysis of findings provided both a micro view focusing on individual risk factor and a managerial view from a systematic level. The findings also contribute the effective information to improve the risk management related schedule delay in PCPs.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Access Restricted. View access options
Article
Publication date: 28 August 2023

Biao Liu, Qiao Wang, Y.T. Feng, Zongliang Zhang, Quanshui Huang, Wenxiang Tian and Wei Zhou

3D steady heat conduction analysis considering heat source is conducted on the fundamental of the fast multipole method (FMM)-accelerated line integration boundary element method…

82

Abstract

Purpose

3D steady heat conduction analysis considering heat source is conducted on the fundamental of the fast multipole method (FMM)-accelerated line integration boundary element method (LIBEM).

Design/methodology/approach

Due to considering the heat source, domain integral is generated in the traditional heat conduction boundary integral equation (BIE), which will counteract the well-known merit of the BEM, namely, boundary-only discretization. To avoid volume discretization, the enhanced BEM, the LIBEM with dimension reduction property is introduced to transfer the domain integral into line integrals. Besides, owing to the unsatisfactory performance of the LIBEM when it comes to large-scale structures requiring massive computation, the FMM-accelerated LIBEM (FM-LIBEM) is proposed to improve the computation efficiency further.

Findings

Assuming N and M are the numbers of nodes and integral lines, respectively, the FM-LIBEM can reduce the time complexity from O(NM) to about O(N+ M), and a full discussion and verification of the advantage are done based on numerical examples under heat conduction.

Originality/value

(1) The LIBEM is applied to 3D heat conduction analysis with heat source. (2) The domain integrals can be transformed into boundary integrals with straight line integrals by the LIM. (3) A FM-LIBEM is proposed and can reduce the time complexity from O(NM) to O(N+ M). (4) The FM-LIBEM with high computational efficiency is exerted to solve 3D heat conduction analysis with heat source in massive computation successfully.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Book part
Publication date: 20 January 2021

Yao Lixia

Abstract

Details

Energy Security in Times of Economic Transition: Lessons from China
Type: Book
ISBN: 978-1-83982-465-4

Available. Open Access. Open Access
Article
Publication date: 15 October 2021

Bangxi Li, Chong Liu, Feng Zhao and Yanghua Huang

In the current literature, there is little systematic research on the relationship among adjustment of the income distribution, change in economic structure and improvement of…

966

Abstract

Purpose

In the current literature, there is little systematic research on the relationship among adjustment of the income distribution, change in economic structure and improvement of macroeconomic efficiency.

Design/methodology/approach

This paper expands Marx's reproduction schema into the “Marx–Sraffa” three-department structure table comprising fixed capital, general means of production and means of consumption and employs China's input–output table from 1987 to 2015 to portray the relationship between income distribution and macroeconomic efficiency under investment-driven growth.

Findings

This paper calculates the wage–profit curve of China's economy and evaluates the space of macroeconomic efficiency improvement in China based on the deviation between actual and potential income distribution structure.

Originality/value

The results show that there is a downward trend of the profit rate, which meets Marx's theoretical prediction, and the decline in the profit rate is mainly attributed to an increase in the organic composition of capital arising from the rapid growth of fixed capital investment under extended growth. The analysis of macroeconomic efficiency shows that the space for improving macroeconomic efficiency is extremely limited under traditional growth pattern and that China must transform its economic development pattern and foster new economic growth drivers.

Details

China Political Economy, vol. 4 no. 1
Type: Research Article
ISSN: 2516-1652

Keywords

Access Restricted. View access options
Article
Publication date: 19 August 2024

Ibrahim T. Teke and Ahmet H. Ertas

The paper's goal is to examine and illustrate the useful uses of submodeling in finite element modeling for topology optimization and stress analysis. The goal of the study is to…

140

Abstract

Purpose

The paper's goal is to examine and illustrate the useful uses of submodeling in finite element modeling for topology optimization and stress analysis. The goal of the study is to demonstrate how submodeling – more especially, a 1D approach – can reliably and effectively produce ideal solutions for challenging structural issues. The paper aims to demonstrate the usefulness of submodeling in obtaining converged solutions for stress analysis and optimized geometry for improved fatigue life by studying a cantilever beam case and using beam formulations. In order to guarantee the precision and dependability of the optimization process, the developed approach will also be validated through experimental testing, such as 3-point bending tests and 3D printing. Using 3D finite element models, the 1D submodeling approach is further validated in the final step, showing a strong correlation with experimental data for deflection calculations.

Design/methodology/approach

The authors conducted a literature review to understand the existing research on submodeling and its practical applications in finite element modeling. They selected a cantilever beam case as a test subject to demonstrate stress analysis and topology optimization through submodeling. They developed a 1D submodeling approach to streamline the optimization process and ensure result validity. The authors utilized beam formulations to optimize and validate the outcomes of the submodeling approach. They 3D-printed the optimized models and subjected them to a 3-point bending test to confirm the accuracy of the developed approach. They employed 3D finite element models for submodeling to validate the 1D approach, focusing on specific finite elements for deflection calculations and analyzed the results to demonstrate a strong correlation between the theoretical models and experimental data, showcasing the effectiveness of the submodeling methodology in achieving optimal solutions efficiently and accurately.

Findings

The findings of the paper are as follows: 1. The use of submodeling, specifically a 1D submodeling approach, proved to be effective in achieving optimal solutions more efficiently and accurately in finite element modeling. 2. The study conducted on a cantilever beam case demonstrated successful stress analysis and topology optimization through submodeling, resulting in optimized geometry for enhanced fatigue life. 3. Beam formulations were utilized to optimize and validate the outcomes of the submodeling approach, leading to the successful 3D printing and testing of the optimized models through a 3-point bending test. 4. Experimental results confirmed the accuracy and validity of the developed submodeling approach in streamlining the optimization process. 5. The use of 3D finite element models for submodeling further validated the 1D approach, with specific finite elements showing a strong correlation with experimental data in deflection calculations. Overall, the findings highlight the effectiveness of submodeling techniques in achieving optimal solutions and validating results in finite element modeling, stress analysis and optimization processes.

Originality/value

The originality and value of the paper lie in its innovative approach to utilizing submodeling techniques in finite element modeling for structural analysis and optimization. By focusing on the reduction of finite element models and the creation of smaller, more manageable models through submodeling, the paper offers designers a more efficient and accurate way to achieve optimal solutions for complex problems. The study's use of a cantilever beam case to demonstrate stress analysis and topology optimization showcases the practical applications of submodeling in real-world scenarios. The development of a 1D submodeling approach, along with the utilization of beam formulations and 3D printing for experimental validation, adds a novel dimension to the research. Furthermore, the paper's integration of 1D and 3D submodeling techniques for deflection calculations and validation highlights the thoroughness and rigor of the study. The strong correlation between the finite element models and experimental data underscores the reliability and accuracy of the developed approach. Overall, the originality and value of this paper lie in its comprehensive exploration of submodeling techniques, its practical applications in structural analysis and optimization and its successful validation through experimental testing.

1 – 6 of 6
Per page
102050