Zitong He, Xiaolin Ma, Jie Luo, Anoop Kumar Sahu, Atul kumar Sahu and Nitin Kumar Sahu
Advanced manufacturing machines (AMMs) are searched as a momentous asset across the manufacturing societies for quenching and addressing the production units under economical…
Abstract
Purpose
Advanced manufacturing machines (AMMs) are searched as a momentous asset across the manufacturing societies for quenching and addressing the production units under economical circumstances, i.e. production of high-quality of goods under feasible cost. AMMs are significant in holding the managers against their rivals and competitors with high profit margins. The authors developed the decision support mechanism/portfolio (DSM-P) consist of knowledge-based cluster approach with a dynamic model. The purpose of research work is to measure overall economic worth of AMMs under objective and grey-imperfect (mixed) data by exploring the proposed DSM-P.
Design/methodology/approach
The authors developed the DSM-P that consist of knowledge-based cluster, three multi-criteria decision-making (MCDM) techniques-1-2-3 with complementary grey relational analysis-4(GRA), approach with a dynamic model (complied by technical plus cost and agility measures of AMMs). The proposed DSM-P enables the manager to map the overall economic worth of candidate AMMs under objective and grey-mixed data.
Findings
The presented DSM-P assist the managers for handling the selection problem of AMMs, i.e. CNCs, robots, automatic-guided vehicle, etc under mixed (objective cum grey) data. To enable the readers for intensely understand the work, the utility of proposed approach is displayed by illustrating a polar robot evaluation and selection problem. It is ascertained that the robot candidate-11 alternative is fulfilling the entire technical cum cost and agility measures.
Originality/value
The DSM-P provides more precise and reliable outcomes due to a usage of the dominance theory. Under the dominance theory, the ranks are obtained by MCDM techniques-1-2-3 are compared with ranks gathered by the GRA-4 under objective cum grey data, formed the novelties in presented research work. From a future perspective, the grey-based models in DSM-P can be built/extended/constructed more extensive and can be simulated by the same approach.
Details
Keywords
Customers will develop a stronger desire to purchase when more people are waiting in line for service due to the herding effect. However, this also leads to longer queue times…
Abstract
Purpose
Customers will develop a stronger desire to purchase when more people are waiting in line for service due to the herding effect. However, this also leads to longer queue times, causing customers to experience a waiting patience time. This study examines these two psychological aspects of delay-sensitive customers in service systems, considering both homogeneous and heterogeneous customer scenarios to explore the optimal pricing strategy for service providers.
Design/methodology/approach
Using queueing theory, we construct and optimally solve the customer's service utility function and the service provider's service revenue function. Further, the model is extended to account for heterogeneous customers, solving the utility and revenue functions accordingly.
Findings
Results show that service revenue increases with the intensity of herding behavior and the length of patience time. If customers have low herding intensity and short patience time, the service provider only needs to serve a portion of the customers. For heterogeneous customers, if a large proportion exhibits high herding intensity, the service provider should focus on serving them. Otherwise, the service provider should serve all high-intensity herding customers while striving to attract low-intensity herding customers.
Originality/value
This paper considers the combined utility of multiple customer psychology and examines homogeneous and heterogeneous customers. The findings provide valuable managerial insights for service providers' pricing and service strategies.
Details
Keywords
Bo Jiang, Changhai Tian, Jiehang Deng and Zitong Zhu
This study aims to analyze the development direction of train speed, density and weight in China.
Abstract
Purpose
This study aims to analyze the development direction of train speed, density and weight in China.
Design/methodology/approach
The development of China's railway in the past 40 years can be divided into 3 stages. At the stage of potential tapping and capacity expansion, it is important to improve the train weight and density by upgrading the existing lines, and improving transportation capacity rapidly. At the stage of railway speed increase, the first priority is to increase train speed, reduce the travel time of passenger train, and synchronously take into account the increase of train density and weight. At the stage of developing high-speed railway, train speed, density and weight are co-developing on demand.
Findings
The train speed of high-speed railway will be 400 km h−1, the interval time of train tracking will be 3 min, and the traffic density will be more than 190 pairs per day. The running speed of high-speed freight EMU will reach 200 km h−1 and above. The maximum speed of passenger train on mixed passenger and freight railway can reach 200 km h−1. The minimum interval time of train tracking can be compressed to 5 min. The freight train weight of 850 m series arrival-departure track railway can be increased to 4,500–5,000 t and that of 1,050 m series to 5,500–6,400 t. EMU trains should gradually replace ordinary passenger trains to improve the quality of railway passenger service. Small formation trains will operate more in intercity railway, suburban railway and short-distance passenger transportation.
Originality/value
The research can provide new connotations and requirements of railway train speed, density and weight in the new railway stage.
Details
Keywords
Haiqing Hu and Tian Wu
Strengthening the combination of technology and finance can significantly promote the development of economy and society. Urbanization is a crucial standard to measure the…
Abstract
Strengthening the combination of technology and finance can significantly promote the development of economy and society. Urbanization is a crucial standard to measure the economic and social development of a country and region, and urban regional planning based on science and technology finance has always been the focus of both domestic and foreign research institutions. Thus, this paper takes Mianyang, the first city of science and technology, as the object of research, and from the angle of the development process of Mianyang, investigates the three stages of the construction and development of this science and technology city. This study analyzes the characteristics of regional planning of Mianyang City and sums up the idea of relying on the old city to build another new district, which boosts the development of science and technology as well as the economy. From two specific angles (i.e., urban spatial function region planning and urban and rural planning), this paper thoroughly studies a multiscale planning scheme of Mianyang’s urban area in recent years by researching the local policy, system, finance, and society. Empirical measurement proves that reasonable planning and construction of the science and technology city Mianyang can accelerate the development process of the western region, effectively promoting the economic development of the surrounding areas of Sichuan and remarkably improving the overall quality of the regional economy of both Chongqing and Sichuan Provinces.