Search results

1 – 8 of 8
Article
Publication date: 18 November 2024

Shangjie Feng, Buqing Cao, Ziming Xie, Zhongxiang Fu, Zhenlian Peng and Guosheng Kang

With the continuous increase in Web services, efficient identification of Web services that meet developers’ needs and understanding their relationships remains a challenge…

Abstract

Purpose

With the continuous increase in Web services, efficient identification of Web services that meet developers’ needs and understanding their relationships remains a challenge. Previous research has improved recommendation effectiveness by using correlations between Web services through graph neural networks (GNNs), while it has not fully leveraged service descriptions, limiting the depth and diversity of learning. To this end, a Web services recommendation method called LLMSARec, based on Large Language Model and semantic alignment, is proposed. This study aims to extract potential semantic information from services and learn deeper relationships between services.

Design/methodology/approach

This method consists of two core modules: profile generation and maximizing mutual information. The profile generation module uses LLM to analyze the descriptions of services, infer and construct service profiles. Concurrently, it uses LLM as text encoders to encode inferred service profiles for enhanced service representation learning. The maximizing mutual information model aims to align the semantic features of the services text inferred by LLM with structural semantic features of the services captured by GNNs, thus achieving a more comprehensive representation of services. The aligned representation serves as an input for the model to identify services with superior matching accuracy, thereby enhancing the service recommendation capability.

Findings

Experimental comparisons and analyses were conducted on the Programmable Web platform data set, and the results demonstrated that the effectiveness of Web service recommendations can be significantly improved by using LLMSARec.

Originality/value

In this study, the authors propose a Web service recommendation approach based on Large Language Model and semantic alignment. By extracting latent semantic information from services and effectively aligning semantic features with structural features, new representations can be generated to significantly enhance recommendation accuracy.

Details

International Journal of Web Information Systems, vol. 21 no. 1
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 24 June 2024

Yanxinwen Li, Ziming Xie, Buqing Cao and Hua Lou

With the introduction of graph structure learning into service classification, more accurate graph structures can significantly improve the precision of service classification…

Abstract

Purpose

With the introduction of graph structure learning into service classification, more accurate graph structures can significantly improve the precision of service classification. However, existing graph structure learning methods tend to rely on a single information source when attempting to eliminate noise in the original graph structure and lack consideration for the graph generation mechanism. To address this problem, this paper aims to propose a graph structure estimation neural network-based service classification (GSESC) model.

Design/methodology/approach

First, this method uses the local smoothing properties of graph convolutional networks (GCN) and combines them with the stochastic block model to serve as the graph generation mechanism. Next, it constructs a series of observation sets reflecting the intrinsic structure of the service from different perspectives to minimize biases introduced by a single information source. Subsequently, it integrates the observation model with the structural model to calculate the posterior distribution of the graph structure. Finally, it jointly optimizes GCN and the graph estimation process to obtain the optimal graph.

Findings

The authors conducted a series of experiments on the API data set and compared it with six baseline methods. The experimental results demonstrate the effectiveness of the GSESC model in service classification.

Originality/value

This paper argues that the data set used for service classification exhibits a strong community structure. In response to this, the paper innovatively applies a graph-based learning model that considers the underlying generation mechanism of the graph to the field of service classification and achieves good results.

Details

International Journal of Web Information Systems, vol. 20 no. 4
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 6 February 2024

Junyi Chen, Buqing Cao, Zhenlian Peng, Ziming Xie, Shanpeng Liu and Qian Peng

With the increasing number of mobile applications, efficiently recommending mobile applications to users has become a challenging problem. Although existing mobile application…

Abstract

Purpose

With the increasing number of mobile applications, efficiently recommending mobile applications to users has become a challenging problem. Although existing mobile application recommendation approaches based on user attributes and behaviors have achieved notable effectiveness, they overlook the diffusion patterns and interdependencies of topic-specific mobile applications among user groups. mobile applications among user groups. This paper aims to capture the diffusion patterns and interdependencies of mobile applications among user groups. To achieve this, a topic-aware neural network-based mobile application recommendation method, referred to as TN-MR, is proposed.

Design/methodology/approach

In this method, first, the user representations are enhanced by introducing a topic-aware attention layer, which captures both the topic context and the diffusion history context. Second, it exploits a time-decay mechanism to simulate changes in user interest. Multitopic user representations are aggregated by the time decay module to output the user representations of cascading representations under multiple topics. Finally, user scores that are likely to download the mobile application are predicted and ranked.

Findings

Experimental comparisons and analyses were conducted on the actual 360App data set, and the results demonstrate that the effectiveness of mobile application recommendations can be significantly improved by using TN-MR.

Originality/value

In this paper, the authors propose a mobile application recommendation method based on topic-aware attention networks. By capturing the diffusion patterns and dependencies of mobile applications, it effectively assists users in selecting their applications of interest from thousands of options, significantly improving the accuracy of mobile application recommendations.

Details

International Journal of Web Information Systems, vol. 20 no. 2
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 14 March 2016

Juan Wu, Ziming Kou and Gongjun Cui

The purpose of this paper is to prepare carbon fiber-reinforced polyimide matrix composites and to investigate the single role of carbon fiber in polyimide composites on…

360

Abstract

Purpose

The purpose of this paper is to prepare carbon fiber-reinforced polyimide matrix composites and to investigate the single role of carbon fiber in polyimide composites on tribological performance under distilled water condition.

Design/methodology/approach

Three carbon fiber-reinforced polyimide matrix composites were fabricated by using a hot press molding technique. The tribological behaviors of carbon fiber-reinforced polyimide matrix composites sliding against steel ball were evaluated with a ball-on-disk tribotester under distilled water condition. Meanwhile, the effect of different length of carbon fiber on the wear resistance of polyimide matrix composites was investigated during the sliding process.

Findings

The friction coefficients and specific wear rates of polyimide composites containing 100 μm carbon fibers were lower than those of other specimens. The wear mechanism of carbon fiber-reinforced composites was delamination under distilled water condition. The interfacial combination between the carbon fiber and matrix became worse with the increase of length of carbon fiber.

Originality/value

This paper reported the effect of the different length of carbon fiber on polyimide matrix composites to prepare mechanical parts in mining industrial fields.

Details

Industrial Lubrication and Tribology, vol. 68 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 June 2023

Jingjing Sun, Ziming Zeng, Tingting Li and Shouqiang Sun

The outbreak of COVID-19 has become a major public health emergency worldwide. How to effectively guide public opinion and implement precise prevention and control is a hot topic…

Abstract

Purpose

The outbreak of COVID-19 has become a major public health emergency worldwide. How to effectively guide public opinion and implement precise prevention and control is a hot topic in current research. Mining the spatiotemporal coupling between online public opinion and offline epidemics can provide decision support for the precise management and control of future emergencies.

Design/methodology/approach

This study focuses on analyzing the spatiotemporal coupling relationship between public opinion and the epidemic. First, based on Weibo information and confirmed case information, a field framework is constructed using field theory. Second, SnowNLP is used for sentiment mining and LDA is utilized for topic extraction to analyze the topic evolution and the sentiment evolution of public opinion in each coupling stage. Finally, the spatial model is used to explore the coupling relationship between public opinion and the epidemic in space.

Findings

The findings show that there is a certain coupling between online public opinion sentiment and offline epidemics, with a significant coupling relationship in the time dimension, while there is no remarkable coupling relationship in space. In addition, the core topics of public concern are different at different coupling stages.

Originality/value

This study deeply explores the spatiotemporal coupling relationship between online public opinion and offline epidemics, adding a new research perspective to related research. The result can help the government and relevant departments understand the dynamic development of epidemic events and achieve precise control while mastering the dynamics of online public opinion.

Details

Library Hi Tech, vol. 42 no. 6
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 29 August 2023

Qingqing Li, Ziming Zeng, Shouqiang Sun, Chen Cheng and Yingqi Zeng

The paper aims to construct a spatiotemporal situational awareness framework to sense the evolutionary situation of public opinion in social media, thus assisting relevant…

Abstract

Purpose

The paper aims to construct a spatiotemporal situational awareness framework to sense the evolutionary situation of public opinion in social media, thus assisting relevant departments in formulating public opinion control measures for specific time and space contexts.

Design/methodology/approach

The spatiotemporal situational awareness framework comprises situational element extraction, situational understanding and situational projection. In situational element extraction, the data on the COVID-19 vaccine, including spatiotemporal tags and text contents, is extracted. In situational understanding, the bidirectional encoder representation from transformers – latent dirichlet allocation (BERT-LDA) and bidirectional encoder representation from transformers – bidirectional long short-term memory (BERT-BiLSTM) are used to discover the topics and emotional labels hidden in opinion texts. In situational projection, the situational evolution characteristics and patterns of online public opinion are uncovered from the perspective of time and space through multiple visualisation techniques.

Findings

From the temporal perspective, the evolution of online public opinion is closely related to the developmental dynamics of offline events. In comparison, public views and attitudes are more complex and diversified during the outbreak and diffusion periods. From the spatial perspective, the netizens in hotspot areas with higher discussion volume are more rational and prefer to track the whole process of event development, while the ones in coldspot areas with less discussion volume pay more attention to the expression of personal emotions. From the perspective of intertwined spatiotemporal, there are differences in the focus of attention and emotional state of netizens in different regions and time stages, caused by the specific situations they are in.

Originality/value

The situational awareness framework can shed light on the dynamic evolution of online public opinion from a multidimensional perspective, including temporal, spatial and spatiotemporal perspectives. It enables decision-makers to grasp the psychology and behavioural patterns of the public in different regions and time stages and provide targeted public opinion guidance measures and offline event governance strategies.

Details

The Electronic Library , vol. 41 no. 5
Type: Research Article
ISSN: 0264-0473

Keywords

Article
Publication date: 17 May 2021

Ziming Zeng, Yu Shi, Lavinia Florentina Pieptea and Junhua Ding

Aspects extracted from the user’s historical records are widely used to define user’s fine-grained preferences for building interpretable recommendation systems. As the aspects…

Abstract

Purpose

Aspects extracted from the user’s historical records are widely used to define user’s fine-grained preferences for building interpretable recommendation systems. As the aspects were extracted from the historical records, the aspects that represent user’s negative preferences cannot be identified because of their absence from the records. However, these latent aspects are also as important as those aspects representing user’s positive preferences for building a recommendation system. This paper aims to identify the user’s positive preferences and negative preferences for building an interpretable recommendation.

Design/methodology/approach

First, high-frequency tags are selected as aspects to describe user preferences in aspect-level. Second, user positive and negative preferences are calculated according to the positive and negative preference model, and the interaction between similar aspects is adopted to address the aspect sparsity problem. Finally, an experiment is designed to evaluate the effectiveness of the model. The code and the experiment data link is: https://github.com/shiyu108/Recommendation-system

Findings

Experimental results show the proposed approach outperformed the state-of-the-art methods in widely used public data sets. These latent aspects are also as important as those aspects representing the user’s positive preferences for building a recommendation system.

Originality/value

This paper provides a new approach that identifies and uses not only users’ positive preferences but also negative preferences, which can capture user preference precisely. Besides, the proposed model provides good interpretability.

Article
Publication date: 26 January 2022

Ziming Zeng, Shouqiang Sun, Tingting Li, Jie Yin and Yueyan Shen

The purpose of this paper is to build a mobile visual search service system for the protection of Dunhuang cultural heritage in the smart library. A novel mobile visual search…

Abstract

Purpose

The purpose of this paper is to build a mobile visual search service system for the protection of Dunhuang cultural heritage in the smart library. A novel mobile visual search model for Dunhuang murals is proposed to help users acquire rich knowledge and services conveniently.

Design/methodology/approach

First, local and global features of images are extracted, and the visual dictionary is generated by the k-means clustering. Second, the mobile visual search model based on the bag-of-words (BOW) and multiple semantic associations is constructed. Third, the mobile visual search service system of the smart library is designed in the cloud environment. Furthermore, Dunhuang mural images are collected to verify this model.

Findings

The findings reveal that the BOW_SIFT_HSV_MSA model has better search performance for Dunhuang mural images when the scale-invariant feature transform (SIFT) and the hue, saturation and value (HSV) are used to extract local and global features of the images. Compared with different methods, this model is the most effective way to search images with the semantic association in the topic, time and space dimensions.

Research limitations/implications

Dunhuang mural image set is a part of the vast resources stored in the smart library, and the fine-grained semantic labels could be applied to meet diverse search needs.

Originality/value

The mobile visual search service system is constructed to provide users with Dunhuang cultural services in the smart library. A novel mobile visual search model based on BOW and multiple semantic associations is proposed. This study can also provide references for the protection and utilization of other cultural heritages.

Details

Library Hi Tech, vol. 40 no. 6
Type: Research Article
ISSN: 0737-8831

Keywords

1 – 8 of 8