Search results
1 – 10 of 45Ailing Wang, Yong Deng, Kaihong Li, Wenlei Li, Dongliang Yu, Gan Cui, JianGuo Liu and Zili Li
Alternating current (AC) corrosion is a type of corrosion that occurs in buried pipelines under AC stray current interference, which can increase the hydrogen embrittlement…
Abstract
Purpose
Alternating current (AC) corrosion is a type of corrosion that occurs in buried pipelines under AC stray current interference, which can increase the hydrogen embrittlement sensitivity of pipelines. However, rare research works have been conducted on the hydrogen permeability characteristics of pipeline steel under AC stray current interference. The purpose of this paper is to study hydrogen permeation behavior of X80 steel under AC stray current interference.
Design/methodology/approach
In this paper, the hydrogen permeation behavior of X80 steel under AC interference is studied by AC hydrogen charging experiment in a dual electrolytic cell. The relationship between hydrogen evolution rate and hydrogen permeation flux is studied using the gas collection method. The difference between AC hydrogen permeability and direct current (DC) hydrogen permeability is also discussed.
Findings
The anodic dissolution caused by AC corrosion promotes the chemical desorption reaction of the adsorbed hydrogen atoms on the surface, reducing the hydrogen atom absorption ratio by 70%. When the AC is smaller than 150░ A/m2, the hydrogen permeation process is controlled by the hydrogen atom generation rate, and the hydrogen permeation flux increases with the increase in hydrogen atom generation rate. When the AC exceeds 400░ A/m2, the hydrogen permeation process is controlled by the absorption ratio. The hydrogen permeation flux decreases with the decrease in the absorption ratio. Under AC interference, there is a maximum hydrogen permeation flux that linearly correlates to the H+ concentration in the solutions.
Originality/value
The high-strength steel is very sensitive to hydrogen embrittlement, and X80 steel has been widely used in oil and gas pipelines. To date, no research has been conducted on the hydrogen permeation behavior of pipeline steel under AC interference, and the hydrogen permeability characteristics of pipeline steel under AC interference are not clear. The research results of this paper are of great significance for ensuring the intrinsic safety of high-strength pipelines under AC stray current interference.
Details
Keywords
Jun Wu, Cheng Huang, Zili Li, Runsheng Li, Guilan Wang and Haiou Zhang
Wire and arc additive manufacturing (WAAM) is a widely used advanced manufacturing technology. If the surface defects occurred during welding process cannot be detected and…
Abstract
Purpose
Wire and arc additive manufacturing (WAAM) is a widely used advanced manufacturing technology. If the surface defects occurred during welding process cannot be detected and repaired in time, it will form the internal defects. To address this problem, this study aims to develop an in situ monitoring system for the welding process with a high-dynamic range imaging (HDR) melt pool camera.
Design/methodology/approach
An improved you only look once version 3 (YOLOv3) model was proposed for online surface defects detection and classification. In this paper, improvements were mainly made in the bounding box clustering algorithm, bounding box loss function, classification loss function and network structure.
Findings
The results showed that the improved model outperforms the Faster regions with convolutional neural network features, single shot multibox detector, RetinaNet and YOLOv3 models with mAP value of 98.0% and a recognition rate of 59 frames per second. And it was indicated that the improved YOLOv3 model satisfied the requirements of real-time monitoring well in both efficiency and accuracy.
Originality/value
Experimental results show that the improved YOLOv3 model can solve the problem of poor performance of traditional defect detection models and other deep learning models. And the proposed model can meet the requirements of WAAM quality monitoring.
Details
Keywords
Jianli Cong, Hang Zhang, Zilong Wei, Fei Yang, Zaitian Ke, Tao Lu, Rong Chen, Ping Wang and Zili Li
This study aimed to facilitate a rapid evaluation of track service status and vehicle ride comfort based on car body acceleration. Consequently, a low-cost, data-driven approach…
Abstract
Purpose
This study aimed to facilitate a rapid evaluation of track service status and vehicle ride comfort based on car body acceleration. Consequently, a low-cost, data-driven approach was proposed for analyzing speed-related acceleration limits in metro systems.
Design/methodology/approach
A portable sensing terminal was developed to realize easy and efficient detection of car body acceleration. Further, field measurements were performed on a 51.95-km metro line. Data from 272 metro sections were tested as a case study, and a quantile regression method was proposed to fit the control limits of the car body acceleration at different speeds using the measured data.
Findings
First, the frequency statistics of the measured data in the speed-acceleration dimension indicated that the car body acceleration was primarily concentrated within the constant speed stage, particularly at speeds of 15.4, 18.3, and 20.9 m/s. Second, resampling was performed according to the probability density distribution of car body acceleration for different speed domains to achieve data balance. Finally, combined with the traditional linear relationship between speed and acceleration, the statistical relationships between the speed and car body acceleration under different quantiles were determined. We concluded the lateral/vertical quantiles of 0.8989/0.9895, 0.9942/0.997, and 0.9998/0.993 as being excellent, good, and qualified control limits, respectively, for the lateral and vertical acceleration of the car body. In addition, regression lines for the speed-related acceleration limits at other quantiles (0.5, 0.75, 2s, and 3s) were obtained.
Originality/value
The proposed method is expected to serve as a reference for further studies on speed-related acceleration limits in rail transit systems.
Details
Keywords
JiaYu Zhou, Zili Li, JianGuo Liu, Xiao Xing, Gan Cui, ShouXin Zhang, Ran Cheng and YiShu Wang
The purpose of this paper is to quantify the influence of alternating current (AC) interference on hydrogen evolution reaction of X80 steel.
Abstract
Purpose
The purpose of this paper is to quantify the influence of alternating current (AC) interference on hydrogen evolution reaction of X80 steel.
Design/methodology/approach
The hydrogen evolution potential was obtained by cathodic potentiodynamic polarization curve. The instantaneous potential under AC interference was obtained by high-frequency acquisition with three-electrode system. Electrochemical impedance spectroscopy and Tafel polarization curves were used to study the influence mechanism of AC interference on instantaneous potential.
Findings
It was concluded that the hydrogen evolution reaction could occur on X80 steel under AC interference. There were critical AC current densities of about 100 to 200 A/m2, beyond which the cathode reaction of X80 steel changed from oxygen absorption to hydrogen evolution. Besides the pH value, the initial polarization potential EZ and impedance module of the steel/electrolyte interface under AC interference were also the factors that affected the critical AC densities in different solutions.
Originality/value
This research quantified the hydrogen evolution capacity of X80 steel under AC interference, which could be applied to clear the effect of AC interference on hydrogen evolution reaction.
Details
Keywords
Zili Li, Chao Yang, Gan Cui, Shouxin Zhang and Chengbin Zhang
When hydrogen evolution reaction occurs on a metal surface, on the one hand, the generated hydrogen atom may penetrate into the metal that causes the hydrogen embrittlement…
Abstract
Purpose
When hydrogen evolution reaction occurs on a metal surface, on the one hand, the generated hydrogen atom may penetrate into the metal that causes the hydrogen embrittlement failure of materials; on the other hand, the hydrogen generation may increase the local pressure in the coating and cause coating blistering. The purpose of this study is to study the effect of NaCl concentration and pH on hydrogen evolution reaction of X60 steel.
Design/methodology/approach
A cathodic polarization curve 257E-2V vs OCP and EIS was obtained by conventional three-electrode system in different NaCl concentrations, 257E3.5 and pH. Second, various parameters such as hydrogen evolution, over-potential current–density polarization resistance and capacitance of double electric layer were obtained based on fitting of the experimental data. Finally, the reaction mechanism was determined by Tafel curves.
Findings
It was concluded that in different NaCl concentrations, diffusion layer induced by concentration polarization affects the diffusion process of H+ ions, which makes over-potential increase. Under great effect of concentration polarization, the reaction is different in acid and alkaline environments, and the dielectric layer shows the characteristic of meta-alkaline adsorption, which makes difference in mechanism.
Originality/value
This research not only has theoretical significance but also gains utilization prospect. Ultimately, this research could be applied to clear hydrogen evolution process and protect long-distance pipeline against delamination.
Details
Keywords
Jun Wang, Zili Li, Gan Cui, JianGuo Liu, Chuanping Kong, Long Wang, Ge Gao and Jian Guo
The purpose of this paper is to study the corrosion behaviors of X70 steel under direct current (DC) interference at 0-1,200 A/m2 in simulated soil solution.
Abstract
Purpose
The purpose of this paper is to study the corrosion behaviors of X70 steel under direct current (DC) interference at 0-1,200 A/m2 in simulated soil solution.
Design/methodology/approach
The Tafel polarization curves of X70 steel under DC interference were tested using electrochemical method, the corrosion rate was calculated using weight-loss method and the change in steel surface was analyzed by optical microscopy.
Findings
The results showed that E-I polarization curves under 200-1,200 A/m2 interference were linear; with an increase in the DC density, the corrosion potential of X70 steel shifted positively, solution pH after the weight-loss tests increased and corrosion rate increased linearly. A mathematical relationship between polarization resistance Rp and current density was established. Corrosion morphology indicated that pitting corrosion and crevice corrosion occurred on the X70 steel under DC interference in simulated soil solution.
Originality/value
All tests were conducted at a relative higher DC density (200-1,200 A/m2). The linear fitting method is proposed to fit data of Tafel polarization curves under DC interference. This study provides guidelines for safe operation of X70 steel pipelines.
Details
Keywords
Yuanpeng Cheng, Yu Bai, Shanfa Tang, Dukui Zheng, Zili Li and JianGuo Liu
The purpose of this paper is to investigate the corrosion behavior of X65 steel in the CO2-saturated oil/water environment using mass loss method, potentiodynamic polarization…
Abstract
Purpose
The purpose of this paper is to investigate the corrosion behavior of X65 steel in the CO2-saturated oil/water environment using mass loss method, potentiodynamic polarization technique and characterization of the corroded surface techniques.
Design/methodology/approach
The weight loss analysis, electrochemical study and surface investigation were carried out on X65 steel that had been immersed in the CO2/oil/water corrosive medium to understand the corrosion behavior of gathering and transportation pipeline steel. The weight loss tests were carried out in a 3 L autoclave, and effects of water cut and temperature on the CO2 corrosion rate of X65 steel were studied. Electrochemical studies were carried out in a three-electrode electrochemical cell with the test temperature was 60°C, and the CO2 partial pressure was 1 atm by recording open circuit potential/time and potentiodynamic polarization characteristics. The surface and cross-sectional morphologies of corrosion product scales were characterized using scanning electron microscopy. The phases of corrosion product scales were investigated using x-ray diffraction.
Findings
The results showed that due to the wetting and adsorption of crude oil, the corrosion morphology of X65 steel changed under different water cuts. When the water cut of crude oil was 40-50 per cent, uniform corrosion occurred on the steel surface, accompanied by local pitting. While the water cut was 70-80 per cent, the resulting corrosion product scales were thick, loose and partial shedding caused platform corrosion. When the water cut was 90 per cent, the damaged area of platform corrosion was enlarged. Crude oil can hinder the corrosion scales from being dissolved by the corrosive medium, and change dimension and accumulation pattern of the crystal grain, thickness and structure of the corrosion scales. Under the corrosion inhibition effect of crude oil, the temperature sensitive point of X65 steel corrosion process moved to low temperature, appeared at about 50°C, lower corrosion rate interval was broadened and the corrosion resistance of X65 steel was enhanced.
Originality/value
The results can be helpful in selecting the applicable corrosion inhibitors and targeted anti-corrosion measures for CO2-saturated oil/water corrosive environment.
Details
Keywords
Gan Cui, Zili Li, Chao Yang and Xiaoyong Ding
Under normal conditions, there are different protection objects inside and outside the gas station, so two sets of independent cathodic protection systems are adopted. At the same…
Abstract
Purpose
Under normal conditions, there are different protection objects inside and outside the gas station, so two sets of independent cathodic protection systems are adopted. At the same time, an insulating flange is applied at the position where trunk pipelines access to the gas station, which realizes electrical isolation of the structures inside and outside the station. However, as a result of short distance between the two cathodic protection systems, there will be stray current interference between them. The purpose of this paper was to study on the interference between cathodic protection systems of gas station and long distance trunk pipeline.
Design/methodology/approach
Based on the above, in this paper, first, the mathematical model of interference between cathodic protection systems was established and the control equations solved using the boundary element method. Second, the influence of cathodic protection system of gas station on long distance trunk pipeline and the influence of cathodic protection system of long distance trunk pipeline on gas station were studied separately using BEASY software. Finally, a new thought of cathodic protection design for local station was put forward.
Findings
It was concluded that there were serious interference problems between the cathodic protection systems of gas station and long distance trunk pipeline. By moving the potential control point to area outside the influence scope of anode ground bed could avoid the influence of cathodic protection system of gas station on long distance trunk pipeline. By moving the auxiliary anodes away from gas station could avoid the influence of cathodic protection system of long distance trunk pipeline on pipelines in gas station. The new thought of cathodic protection design could avoid the interference between the cathodic protection systems effectively.
Originality/value
It is considered that the results can guide cathodic design for gas station and long distance trunk pipeline. The results can also avoid the interference corrosion between the structures in gas station and trunk pipeline.
Details
Keywords
Ziqing Yang, Gan Cui, Zili Li and JianGuo Liu
In recent years, the demand for oil and gas pipelines has increased rapidly. Due to the restrictions of the pipeline routing, pipelines are generally laid in parallel or in the…
Abstract
Purpose
In recent years, the demand for oil and gas pipelines has increased rapidly. Due to the restrictions of the pipeline routing, pipelines are generally laid in parallel or in the same trench, which results in stray-current interference between the independent cathodic protection (CP) systems. The purpose of this paper is to study the interference between the long-distance parallel pipelines and to obtain the optimized operation for the CP systems.
Design/methodology/approach
In this study, first, the numerical model of parallel pipelines was established using the boundary element analysis software (BEASY). Second, the effects of horizontal distance between parallel pipelines, coating damage rate, soil conductivity and anode output current on the interference of parallel pipelines were studied. Finally, by varying the layout or the output currents of CP stations, an optimized operation scheme osf long-distance parallel pipelines was put forward.
Findings
Simulation results showed that with a decrease in soil conductivity or coating damage rate, the interference increased. Moreover, the interference decreased with an increase in horizontal distance between two parallel pipelines or a decrease in anode output current. It was found that there are three methods to reduce the interference between long-distance parallel pipelines: to reduce the output currents of CP stations, combined protection and to close part of the CP stations. Among them, to close part of CP stations was the optimized scheme because of the lowest operating and maintenance cost.
Originality/value
The optimized operation scheme proposed in this study can not only solve the interference between parallel pipelines but also provide guidance for the parallel pipelines to be built in the future. Reasonably arranging the cathodic protection stations using numerical simulation can avoid the interference in the cathodic protection systems, and reduce the construction cost.
Details
Keywords
Qingmiao Ding, Zili Li, Tao Shen and Gan Cui
This paper aims to research the corrosion behavior of the metal under the disbonded coatings interfered with AC through electrochemical method.
Abstract
Purpose
This paper aims to research the corrosion behavior of the metal under the disbonded coatings interfered with AC through electrochemical method.
Design/methodology/approach
The corrosion behavior of the metal under disbond coating interfered with alternate stray current (AC) was studied by electrochemical methods using the rectangular coating disbonded simulator. The obtained data from electrode potential test, electrochemical impedance spectroscopy (EIS) and polarization curves in simulated soil solution indicated that under the natural corrosion condition, the self-corrosion potential and the corrosion current density of the metal at different depths under disbond coating had obviously changed if there was AC interference.
Findings
The self-corrosion potential of the metal at the same depths under disbond coating shifted negatively with the rising of the AC voltage. Under the condition of cathode polarization, there was still obvious potential gradient with the extension of the deep peeling of the coating gap, and the corrosion current density of the test points was minimum, and the protection effect was best when the cathode protection potential was −1.0 V. When the metal was applied with over-protection, the corrosion rate of the metal increased as AC stray current flowing through it increased.
Originality/value
This paper used the rectangular aperture device to study the corrosion behavior of X80 steel under the disbonded coatings through electrochemical methods when the AC stray current interference voltage was 0V, 1V, 5V or 10V and the protection potential was 0V, −0.9V, −1.0V, −1.2V or −1.3V, respectively. There is great significance to the safe operation and long-term service of pipeline steel in soil environment.
Details