Changpeng Chen, Zhongxu Xiao, Gang Xue, Hailong Liao and Haihong Zhu
High temperature gradient induces high residual stress, producing an important effect on the part manufacturing during laser powder bed fusion (LPBF). The purpose of this study is…
Abstract
Purpose
High temperature gradient induces high residual stress, producing an important effect on the part manufacturing during laser powder bed fusion (LPBF). The purpose of this study is to investigate the effect of the molten pool mode on the thermal stress of Ti-6Al-4V alloy during different deposition processes.
Design/methodology/approach
A coupled thermal-mechanical finite element model was built. The developed model was validated by comparing the numerical results with the experimental data in the maximum molten pool temperature, the molten pool dimension and the residual stress described in the previous work.
Findings
For the single-track process, the keyhole mode caused an increase in both the maximum stress and the high-stress area compared with the conduction mode. For the multitrack process, a lower tensile stress around the scanning track and a higher compressive stress below the scanning track were found in the keyhole mode. For the multilayer process, the stress along the scanning direction at the middle of the part changed from tensile stress to compressive stress with the increase in the deposition layer number. As the powder layer number increased, the stress along the scanning direction near the top surface of the part decreased while the stress along the deposition direction obviously increased, indicating that the stress along the deposition direction became the dominant stress. The keyhole mode can reduce the residual stress near the top of the part, and the conduction mode was more likely to produce a low residual stress near the bottom of the part.
Originality/value
The results provide a systematic understanding of thermal stress during the LPBF process.
Details
Keywords
Yong Cheng, Zhongxu Xiao, Haihong Zhu, Xiaoyan Zeng and Guoqing Wang
Selective laser melting (SLM) is a promising additive manufacturing technology in the field of complex parts’ fabrication. High temperature gradient and residual stress are vital…
Abstract
Purpose
Selective laser melting (SLM) is a promising additive manufacturing technology in the field of complex parts’ fabrication. High temperature gradient and residual stress are vital problems for the development of SLM technology. The purpose of this paper is to investigate the influence of substrate characteristics on the residual stress of SLMed Inconel 718 (IN718).
Design/methodology/approach
The SLMed IN718 samples were fabricated on the substrates with different characteristics, including pre-compression stress, materials and pre-heating. The residual stress at the center of the top surface was measured and compared through Vickers micro-indentation.
Findings
The results indicate that the residual stress reduces when the substrate contains pre-compression stress before the SLM process starts. Both substrate thermal expansion coefficient and thermal conductivity affect the residual stress. In addition to reducing the difference of thermal expansion coefficient between the substrate and the deposited material, the substrate with low thermal conductivity can also decrease the residual stress. Substrate pre-heating at 150°C reduces nearly 42.6 per cent residual stress because of the reduction of the temperature gradient.
Originality/value
The influence of substrate characteristics on the residual stress has been studied. The investigation results can help to control the residual stress generated in SLM processing.
Details
Keywords
Juan Sebastian Gomez Bonilla, Maximilian Alexander Dechet, Jochen Schmidt, Wolfgang Peukert and Andreas Bück
The purpose of this paper is to investigate the effect of different heating approaches during thermal rounding of polymer powders on powder bulk properties such as particle size…
Abstract
Purpose
The purpose of this paper is to investigate the effect of different heating approaches during thermal rounding of polymer powders on powder bulk properties such as particle size, shape and flowability, as well as on the yield of process.
Design/methodology/approach
This study focuses on the rounding of commercial high-density polyethylene polymer particles in two different downer reactor designs using heated walls (indirect heating) and preheated carrier gas (direct heating). Powder bulk properties of the product obtained from both designs are characterized and compared.
Findings
Particle rounding with direct heating leads to a considerable increase in process yield and a reduction in powder agglomeration compared to the design with indirect heating. This subsequently leads to higher powder flowability. In terms of shape, indirect heating yields not only particles with higher sphericity but also entails substantial agglomeration of the rounded particles.
Originality/value
Shape modification via thermal rounding is the decisive step for the success of a top-down process chain for selective laser sintering powders with excellent flowability, starting with polymer particles from comminution. This report provides new information on the influence of the heating mode (direct/indirect) on the performance of the rounding process and particle properties.