Search results
1 – 6 of 6Zhelong Wang, Sen Qiu, Zhongkai Cao and Ming Jiang
Due to the complex mechanism during walking, human gait takes plenty of information reflecting human motion. The method of quantitative measurement of gait makes a profound…
Abstract
Purpose
Due to the complex mechanism during walking, human gait takes plenty of information reflecting human motion. The method of quantitative measurement of gait makes a profound influence in many fields, such as clinical medicine, biped robot control strategy and so on. The purpose of this paper is to present a gait analysis system based on inertial measurement unit (IMU) and combined with body sensor network (BSN).
Design/methodology/approach
The authors placed two wireless inertial nodes on the left and right ankles, so that the acceleration and angular velocity could be obtained from both sides at the same time. By using the kinematical model of the human gait, many methods such as time series analysis, pattern recognition and numerical analysis, are introduced to fuse the inertial data and estimate the sagittal gait parameters.
Findings
The gait parameters evaluation gains a practical precision, especially in the gait phase detection and the process of how the two feet cooperate with each other has been analyzed to learn about the mechanism of biped walking.
Research limitations/implications
The gait analysis procedure is off line, so that the system ensures sampling at a high rate.
Originality/value
This gait analysis system can be utilized to measure quantitative gait parameters. Further, the coordination of dual gait pattern is presented. Last but not least, the system can also be put into capturing and analyzing the motion of other parts of the body.
Details
Keywords
Saisai Li, Qianhua Lei and Liuyang Ren
With the development of the economy, an increasing number of listed companies form subsidiaries in China. Though the increase in the number of subsidiaries affects the…
Abstract
Purpose
With the development of the economy, an increasing number of listed companies form subsidiaries in China. Though the increase in the number of subsidiaries affects the hierarchical structure and risk of conglomerates, few studies relate the hierarchical relationship between the parent company and its subsidiaries to its capital market performance at the conglomerate level. Therefore, this study aims to investigate the relationship between the number of subsidiaries and crash risk.
Design/methodology/approach
Using a sample of all the A-share companies in the Shanghai and Shenzhen stock markets from 2007 to 2015, this study conducts multivariate regression analyses between the number of subsidiaries and the stock price crash risk.
Findings
This study finds an inversed U relationship between the number of subsidiaries and the stock price crash risk, and the above inversed U relationship is steeper in conglomerates with stronger managerial power and less finance distress.
Originality/value
This research has an incremental contribution to the agency problem and governance effect of the parent–subsidiary system in conglomerates. To the best of the authors’ knowledge, this is the first study to show a significant quadratic relationship between the future crash risk and the number of subsidiaries. This paper provides new evidence that the number of subsidiaries has an incremental ability to predict future firm-specific crash risk above other predictors identified by previous research.
Details
Keywords
Qi Yang, ZhiQiang Feng, RuanBing Zhang, YunPu Wang, DengLe Duan, Qin Wang, XiaoYu Zou and YuHuan Liu
This study aims to develop a green, economical and efficient ultrasonic-/microwave assisted extraction (UMAE) process for the extraction of anthocyanins.
Abstract
Purpose
This study aims to develop a green, economical and efficient ultrasonic-/microwave assisted extraction (UMAE) process for the extraction of anthocyanins.
Design/methodology/approach
After optimizing the extraction conditions by response surface methodology, three assays including DPPH, ABTS·+, FRAP were applied to analyze the antioxidant activity of the extracted anthocyanins. The stability under different temperatures, reductant concentrations and pHs was also discussed. The components of anthocyanins in blueberry were analyzed by HPLC-QTOF-MS2.
Findings
The optimal extraction parameters were ultrasonic power of 300 W, microwave power of 365.28 W and solid–liquid ratio of 30 (g/mL). The possible structures can be speculated as Delphinidin-3-O-galactoside, Delphinidin, Petunidin, Delphinidin-3-O-glucoside, Petunidin-3-O-glucoside, Cyanidin-3-O-glucoside. The results demonstrated that the UMAE can improve the yield of anthocyanins in shorter extraction time with higher activity.
Originality/value
The present study may provide a promising and feasible route for extracting anthocyanins from blueberries and studying their physicochemical properties, ultimately promoting the utilization of blueberry anthocyanins.
Details
Keywords
Yu Tang, Shaoming Luo, Guoyuan Li, Zhou Yang and Chaojun Hou
The purpose of this paper is to investigate of the effects of Mn nanoparticle addition on the wettability, microstructure and microhardness of SAC0307-xMn(np) (SAC: Sn–Ag–Cu; x …
Abstract
Purpose
The purpose of this paper is to investigate of the effects of Mn nanoparticle addition on the wettability, microstructure and microhardness of SAC0307-xMn(np) (SAC: Sn–Ag–Cu; x = 0, 0.02, 0.05, 0.1 and 0.3 Wt.%) composite solders.
Design/methodology/approach
The SAC0307-xMn(np) composite solders were prepared by mechanically mixing different weight percentages of Mn nanopowders into the SAC0307 solder paste with rosin flux. In this study, the wettability of the solders was studied using contact angle and spread ratio methods. Afterward, the microstructure of the solders was investigated using scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffractometry. Moreover, the microhardness of the solders was studied.
Findings
The wetting process of SAC0307-xMn(np) composite solders was found to experience four stages. Adding a small amount of Mn nanoparticles (x = 0.05 Wt.%) could improve the wettability compared to Mn-free solder. Beyond this level, the wettability deteriorated. The addition of Mn nanoparticles significantly refined the size and spacing of Ag3Sn grains in the solder matrix. When 0.1 Wt.% Mn nanoparticles was added, both the average size of the Ag3Sn grains and the spacing between the Ag3Sn grains decreased significantly and approached minimum values. Beyond this amount, the size and spacing between Ag3Sn grains increased slightly but remained smaller than those in the Mn-free solder matrix. The refined Ag3Sn grains increased the microhardness of the Mn-containing composite solders by 6-25 per cent, in good agreement with the prediction of the classic theory of dispersion strengthening.
Originality/value
The paper demonstrates that Mn nanoparticle addition could improve the SAC0307-xMn(np) solder wettability and reduce the grain size and spacing between Ag3Sn grains. The enhancement of the solder microhardness shows good correlation with the microstructure.
Details
Keywords
Lakshmi Devaraj, Thaarini S., Athish R.R. and Vallimanalan Ashokan
This study aims to provide a comprehensive overview of thin-film temperature sensors (TTS), focusing on the interplay between material properties and fabrication techniques. It…
Abstract
Purpose
This study aims to provide a comprehensive overview of thin-film temperature sensors (TTS), focusing on the interplay between material properties and fabrication techniques. It evaluates the current state of the art, addressing both low- and high-temperature sensors, and explores the potential applications across various fields. The study also identifies challenges and highlights emerging trends that may shape the future of this technology.
Design/methodology/approach
This study systematically examines existing literature on TTS, categorizing the materials and fabrication methods used. The study compares the performance metrics of different materials, addresses the challenges encountered in thin-film sensors and reviews the case studies to identify successful applications. Emerging trends and future directions are also analyzed.
Findings
This study finds that TTS are integral to various advanced technologies, particularly in high-performance and specialized applications. However, their development is constrained by challenges such as limited operational range, material degradation, fabrication complexities and long-term stability. The integration of nanostructured materials and the advancement of wireless, self-powered and multifunctional sensors are poised to drive significant advancements in this field.
Originality/value
This study offers a unique perspective by bridging the gap between material science and application engineering in TTS. By critically analyzing both established and emerging technologies, the study provides valuable insights into the current state of the field and proposes pathways for future innovation in terms of interdisciplinary approaches. The focus on emerging trends and multifunctional applications sets this review apart from existing literature.
Details
Keywords
This paper gives a review of the finite element techniques (FE) applied in the analysis and design of machine elements; bolts and screws, belts and chains, springs and dampers…
Abstract
This paper gives a review of the finite element techniques (FE) applied in the analysis and design of machine elements; bolts and screws, belts and chains, springs and dampers, brakes, gears, bearings, gaskets and seals are handled. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of this paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An Appendix included at the end of the paper presents a bibliography on finite element applications in the analysis/design of machine elements for 1977‐1997.
Details