Zhongge Guo, Yuhui Wang, Jiale He and Dong Pang
This paper aims to present a novel dynamic reliability model that considers the interval mixed uncertainty for the air-breathing hypersonic flight vehicle (AHFV) to guarantee…
Abstract
Purpose
This paper aims to present a novel dynamic reliability model that considers the interval mixed uncertainty for the air-breathing hypersonic flight vehicle (AHFV) to guarantee flight safety and structural reliability.
Design/methodology/approach
Initially, the force condition of the fuselage is analyzed based on the longitudinal elastic model of an AHFV. Subsequently, a new high-efficiency dynamic reliability model is presented to describe the failure probability evolution of the fuselage structure. For the random uncertainty problem with interval distribution parameters, the interval PHI2 method of time-dependent reliability is used to obtain the time-dependent reliability interval of the AHFV. Finally, the key variables that affect the failure probability accumulation are determined, which provide an important reference for ensuring structural reliability and improving the life span of AHFVs.
Findings
It is demonstrated that the proposed reliability model can obtain more accurate dynamic reliability results for the fuselage, and it is confirmed the key variables that affect the failure probability accumulation. The results also provide an important reference for the reliability analysis of hypersonic vehicles.
Originality/value
The novelty of this work comes from the first application of the PHI2 method (considering the interval mixed uncertainty) in the AHFV and the development of a new reliability model for the entire body of AHFVs. The proposed analysis scheme is implemented on the dynamic model of the AHFV, which provides a more accurate reference for improving the structural reliability and life span of AHFVs.
Details
Keywords
Zhongge Guo, Yunxin Li and Yuhui Wang
To suppress fatigue damage and ensure structural safety, this paper aims to analyze the effect of the damage accumulation on the aeroelastic model of an air-breathing hypersonic…
Abstract
Purpose
To suppress fatigue damage and ensure structural safety, this paper aims to analyze the effect of the damage accumulation on the aeroelastic model of an air-breathing hypersonic flight vehicle (AHFV).
Design/methodology/approach
Initially, by constructing the modified longitudinal elastic model of an AHFV, the stress condition of the fuselage is analyzed, and the model differences with the rigid body are studied. Then, a new damage dynamic model is presented to describe the damage dynamic evolution. Finally, combining the damage model and the longitudinal model of the AHFV, the key variables affecting the damage accumulation are determined.
Findings
It is demonstrated that the elastic deformation must be considered when analyzing the damage characteristics of the fuselage and to determine the key variables that affect the damage accumulation, which provides a more accurate reference for improving the structural reliability and lifespan of AHFVs.
Originality/value
The novelty of this paper comes from the application of the force and stress models for the damage evolution of the AHFV and the development of a new damage model for the entire body with the elastic dynamics of AHFVs.