Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 18 July 2023

Zhongge Guo, Yuhui Wang, Jiale He and Dong Pang

This paper aims to present a novel dynamic reliability model that considers the interval mixed uncertainty for the air-breathing hypersonic flight vehicle (AHFV) to guarantee…

94

Abstract

Purpose

This paper aims to present a novel dynamic reliability model that considers the interval mixed uncertainty for the air-breathing hypersonic flight vehicle (AHFV) to guarantee flight safety and structural reliability.

Design/methodology/approach

Initially, the force condition of the fuselage is analyzed based on the longitudinal elastic model of an AHFV. Subsequently, a new high-efficiency dynamic reliability model is presented to describe the failure probability evolution of the fuselage structure. For the random uncertainty problem with interval distribution parameters, the interval PHI2 method of time-dependent reliability is used to obtain the time-dependent reliability interval of the AHFV. Finally, the key variables that affect the failure probability accumulation are determined, which provide an important reference for ensuring structural reliability and improving the life span of AHFVs.

Findings

It is demonstrated that the proposed reliability model can obtain more accurate dynamic reliability results for the fuselage, and it is confirmed the key variables that affect the failure probability accumulation. The results also provide an important reference for the reliability analysis of hypersonic vehicles.

Originality/value

The novelty of this work comes from the first application of the PHI2 method (considering the interval mixed uncertainty) in the AHFV and the development of a new reliability model for the entire body of AHFVs. The proposed analysis scheme is implemented on the dynamic model of the AHFV, which provides a more accurate reference for improving the structural reliability and life span of AHFVs.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Access Restricted. View access options
Article
Publication date: 10 June 2022

Zhongge Guo, Yunxin Li and Yuhui Wang

To suppress fatigue damage and ensure structural safety, this paper aims to analyze the effect of the damage accumulation on the aeroelastic model of an air-breathing hypersonic…

144

Abstract

Purpose

To suppress fatigue damage and ensure structural safety, this paper aims to analyze the effect of the damage accumulation on the aeroelastic model of an air-breathing hypersonic flight vehicle (AHFV).

Design/methodology/approach

Initially, by constructing the modified longitudinal elastic model of an AHFV, the stress condition of the fuselage is analyzed, and the model differences with the rigid body are studied. Then, a new damage dynamic model is presented to describe the damage dynamic evolution. Finally, combining the damage model and the longitudinal model of the AHFV, the key variables affecting the damage accumulation are determined.

Findings

It is demonstrated that the elastic deformation must be considered when analyzing the damage characteristics of the fuselage and to determine the key variables that affect the damage accumulation, which provides a more accurate reference for improving the structural reliability and lifespan of AHFVs.

Originality/value

The novelty of this paper comes from the application of the force and stress models for the damage evolution of the AHFV and the development of a new damage model for the entire body with the elastic dynamics of AHFVs.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 2 of 2
Per page
102050