Wanyun Xue, Wenxin Huai, Zhongdong Qian, Zhonghua Yang and Yuhong Zeng
The purpose of this paper is to examine the initial mixing of wastewater discharged from submerged outfall diffusers and the influence of port configurations on wastewater…
Abstract
Purpose
The purpose of this paper is to examine the initial mixing of wastewater discharged from submerged outfall diffusers and the influence of port configurations on wastewater distribution based on computational results.
Design/methodology/approach
Marine wastewater discharges from multiport diffusers are investigated by numerically solving three-dimensional and uncompressible two-phase flow fields. A mixture model simulates this flow and the standard k-e model to resolve flow turbulence; inter-phase interactions were described in terms of relative slip velocity between phases. Computations were performed for two values of the port spacings s/H with different current Froude numbers F.
Findings
Computational results compared well with previous laboratory measurements. Numerical results reveal that for both the closely spaced (s/H=0.21) and widely spaced (s/H=3.0) ports, the normalized dilution Sn becomes independent of F; further, the length of the near field xn and the spreading layer thickness hn are functions of F. For the closely spaced ports, the wastewater discharge behaves like a line plume, the Coanda effect is obvious, quasi-bifurcation is present, horseshoe structures of the jets in the planes are rapidly produced and then squashed and elongated, and the jet trajectories based on maximum velocity precede those based on maximum concentration. For the widely spaced ports, the wastewater discharge behaves like a point plume, the Coanda effect is not obvious, bifurcation is present, horseshoe structures of the jets in the planes are gradually produced and become ellipses, and the jet trajectories based on maximum velocity are similar to those based on maximum concentration.
Originality/value
Semi-empirical equations are presented to predict major near field characteristics. These provide guidance for designing multiport diffusers and assessing environmental impact.
Details
Keywords
Zhiwei Li, Wenxin Huai, Zhonghua Yang, Zhongdong Qian and Yuhong Zeng
A radial offset jet has the flow characteristics of a radial jet and an offset jet, which are encountered in many engineering applications. The purpose of this paper is to study…
Abstract
Purpose
A radial offset jet has the flow characteristics of a radial jet and an offset jet, which are encountered in many engineering applications. The purpose of this paper is to study the dynamics and mass transfer characteristics of the radial offset jet with an offset ratio 6, 8 and 12.
Design/methodology/approach
Three turbulence models, namely the SST k-? model, detached eddy simulation model, and improved delayed detached eddy simulation (IDDES), were applied to the radial offset jet with an offset ratio eight and their results were compared with experimental results. The contrasting results, such as the distributions of mean and turbulent velocity and pressure, show that the IDDES model was the best model in simulating the radial offset jet. The results of the IDDES were analyzed, including the Reynolds stress, turbulent kinetic energy, triple-velocity correlations, vertical structure and the tracer concentration distribution.
Findings
In the axisymmetric plane, Reynolds stresses increase to reach a maximum at the location where the jet central line starts to be bent rapidly, and then decrease with increasing distance in the radial direction. The shear layer vortices, which arise from the Kelvin-Helmholtz instability near the jet exit, become larger scale results in the entrainment and vortex pairing, and breakdown when the jet approaches the wall. Near the wall, the vortex swirling direction is different at both front and back of attachment point. In the wall-jet region, the concentration distributions present self-similarity while it keeps constant below the jet in the recirculation region.
Research limitations/implications
The radial offset jet with other offset ratio and exit angle is not considered in this paper and should be investigated.
Originality/value
The results obtained in this paper will provide guidance for studying similar flow and a better understanding of the radial offset jet.