Cong Ding, Zhizhao Qiao and Zhongyu Piao
The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.
Abstract
Purpose
The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.
Design/methodology/approach
The hydrodynamic pressure lubrication models of the nontextured, V-shaped, circular and square microtextures are established. The corresponding oil film pressure distributions are explored. The friction and wear experiments are conducted on a rotating device. The effects of the microstructure shapes and sizes on the wear mechanisms are investigated via the friction coefficients and surface morphologies.
Findings
In comparison, the V-shaped microtexture has the largest oil film carrying capacity and the lowest friction coefficient. The wear mechanism of the V-shaped microtexture is dominated by abrasive and adhesive wear. The V-shaped microtexture has excellent wear resistance under a side length of 300 µm, an interval of 300 µm and a depth of 20 µm.
Originality/value
This study is conductive to the design of wear-resistant surfaces for friction components.