Search results

1 – 10 of 11
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 6 March 2017

He Li, Zhixiang Yu, Chuanjie Zhang and Zhuang Zhang

The paper aims to investigate the determinants of China’s daily intervention in the foreign exchange market since the 2005 reform aimed at moving the Renminbi (RMB) exchange rate…

1099

Abstract

Purpose

The paper aims to investigate the determinants of China’s daily intervention in the foreign exchange market since the 2005 reform aimed at moving the Renminbi (RMB) exchange rate regime towards greater flexibility.

Design/methodology/approach

The paper uses bivariate probit models to test whether China’s intervention decision is driven by three sets of factors, comprising Model I (basic model), Model II and Model III.

Findings

Evidence from the models suggests that medium-term Chinese interventions tend to be leaning-against-the-wind, whereas long-term interventions are leaning-with-the-wind. Furthermore, by analyzing exchange rate volatility, this paper finds that intervention is used by the Chinese central bank to ensure that there are no big swings in the RMB exchange rate.

Originality/value

The paper will be of value to other researchers attempting to understand the policy of the central bank and, in particular, the factors that can lead to interventions during periods of financial crisis.

Details

Studies in Economics and Finance, vol. 34 no. 1
Type: Research Article
ISSN: 1086-7376

Keywords

Access Restricted. View access options
Article
Publication date: 13 November 2017

Zhixiang Song, Fei Guo, Ying Liu, Songtao Hu, Xiangfeng Liu and Yuming Wang

This paper aims to present the slip/no-slip design in two-dimensional water-lubricated tilting pad thrust bearings (TPTBs) considering the turbulence effect and shifting of…

379

Abstract

Purpose

This paper aims to present the slip/no-slip design in two-dimensional water-lubricated tilting pad thrust bearings (TPTBs) considering the turbulence effect and shifting of pressure centers.

Design/methodology/approach

A numerical model is established to analyze the slip condition and the effect of turbulence according to a Reynolds number defined in terms of the slip condition. Simulations are carried out for eccentrically and centrally pivoted bearings and the influence of different slip parameters is discussed.

Findings

A considerable enhancement in load capacity, as well as a reduction in friction, can be achieved by heterogeneous slip/no-slip surface designs for lubricated sliding contacts, especially for near parallel pad configurations. The optimized design largely depends on the pivot position. The load capacity increases by 174 per cent for eccentrically pivoted bearings and 159 per cent for centrally pivoted bearings for a suitable design. When slip zone locates at the middle of the radial direction or close to the inner edge, the performance of the TPTB is better.

Research limitations/implications

The simplification of slip effect on the turbulence (definition of Reynolds number) can only describe the trend of the increasing turbulence due to slip condition. The accurate turbulence expression considering the boundary slip needs further explorations.

Originality/value

The shifting of pressure center due to the slip/no-slip design for TPTBs is investigated in this study. The turbulence effect and influence of slip parameters is discussed for large water-lubricated bearings.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Available. Open Access. Open Access
Article
Publication date: 16 October 2024

Yang Li, Zhicheng Zheng, Yaochen Qin, Haifeng Tian, Zhixiang Xie and Peijun Rong

Drought is the primary disaster that negatively impacts agricultural and animal husbandry production. It can lead to crop reduction and even pose a threat to human survival in…

126

Abstract

Purpose

Drought is the primary disaster that negatively impacts agricultural and animal husbandry production. It can lead to crop reduction and even pose a threat to human survival in environmentally sensitive areas of China (ESAC). However, the phases and periodicity of drought changes in the ESAC remain largely unknown. Thus, this paper aims to identify the periodic characteristics of meteorological drought changes.

Design/methodology/approach

The potential evapotranspiration was calculated using the Penman–Monteith formula recommended by the Food and Agriculture Organization of the United Nations, whereas the standardized precipitation evaporation index (SPEI) of drought was simulated by coupling precipitation data. Subsequently, the Bernaola-Galvan segmentation algorithm was proposed to divide the periods of drought change and the newly developed extreme-point symmetric mode decomposition to analyze the periodic drought patterns.

Findings

The findings reveal a significant increase in SPEI in the ESAC, with the rate of decline in drought events higher in the ESAC than in China, indicating a more pronounced wetting trend in the study area. Spatially, the northeast region showed an evident drying trend, whereas the southwest region showed a wetting trend. Two abrupt changes in the drought pattern were observed during the study period, namely, in 1965 and 1983. The spatial instability of moderate or severe drought frequency and intensity on a seasonal scale was more consistent during 1966–1983 and 1984–2018, compared to 1961–1965. Drought variation was predominantly influenced by interannual oscillations, with the periods of the components of intrinsic mode functions 1 (IMF1) and 2 (IMF2) being 3.1 and 7.3 years, respectively. Their cumulative variance contribution rate reached 70.22%.

Research limitations/implications

The trend decomposition and periods of droughts in the study area were analyzed, which may provide an important scientific reference for water resource management and agricultural production activities in the ESAC. However, several problems remain unaddressed. First, the SPEI considers only precipitation and evapotranspiration, making it extremely sensitive to temperature increases. It also ignores the nonstationary nature of the hydrometeorological water process; therefore, it is prone to bias in drought detection and may overestimate the intensity and duration of droughts. Therefore, further studies on the application and comparison of various drought indices should be conducted to develop a more effective meteorological drought index. Second, the local water budget is mainly affected by surface evapotranspiration and precipitation. Evapotranspiration is calculated by various methods that provide different results. Therefore, future studies need to explore both the advantages and disadvantages of various evapotranspiration calculation methods (e.g. Hargreaves, Thornthwaite and Penman–Monteith) and their application scenarios. Third, this study focused on the temporal and spatial evolution and periodic characteristics of droughts, without considering the driving mechanisms behind them and their impact on the ecosystem. In future, it will be necessary to focus on a sensitivity analysis of drought indices with regard to climate change. Finally, although this study calculated the SPEI using meteorological data provided by China’s high-density observatory network, deviations and uncertainties were inevitable in the point-to-grid spatialization process. This shortcoming may be avoided by using satellite remote sensing data with high spatiotemporal resolution in the future, which can allow pixel-scale monitoring and simulation of meteorological drought evolution.

Practical implications

Under the background of continuous global warming, the climate in arid and semiarid areas of China has shown a trend of warming and wetting. It means that the plant environment in this region is getting better. In the future, the project of afforestation and returning farmland to forest and grassland in this region can increase the planting proportion of water-loving tree species to obtain better ecological benefits. Meanwhile, this study found that in the relatively water-scarce regions of China, drought duration was dominated by interannual oscillations (3.1a and 7.3a). This suggests that governments and nongovernmental organizations in the region should pay attention to the short drought period in the ESAC when they carry out ecological restoration and protection projects such as the construction of forest reserves and high-quality farmland.

Originality/value

The findings enhance the understanding of the phasic and periodic characteristics of drought changes in the ESAC. Future studies on the stress effects of drought on crop yield may consider these effects to better reflect the agricultural response to meteorological drought and thus effectively improve the tolerance of agricultural activities to drought events.

Details

International Journal of Climate Change Strategies and Management, vol. 17 no. 1
Type: Research Article
ISSN: 1756-8692

Keywords

Access Restricted. View access options
Article
Publication date: 26 August 2024

Junjie Gong, Zhixiang Li, Qingqing Lin and Kunhong Hu

This study aims to explore the synthesis and tribological performances of di-n-octyl sebacate (DOS) synthesized with spherical nano-MoS2/sericite (SMS) and carboxylated SMS (CSMS…

16

Abstract

Purpose

This study aims to explore the synthesis and tribological performances of di-n-octyl sebacate (DOS) synthesized with spherical nano-MoS2/sericite (SMS) and carboxylated SMS (CSMS) as catalysts.

Design/methodology/approach

SMS and CSMS were used as esterification catalysts to synthesize DOS from sebacic acid and n-octanol. The two catalysts were in situ dispersed in the synthesized DOS after the reaction to form suspensions. The tribological performances of the two suspensions after 20 days of storage were studied.

Findings

CSMS was more stably dispersed in DOS than SMS, and they reduced friction by 55.6% and 22.2% and wear by 51.3% and 56.5%, respectively. Such results were mainly caused by the COOH on CSMS, which was more conducive to improving the dispersion and friction reduction of CSMS than wear resistance. Another possible reason was the difference between the dispersion amounts of CSMS and SMS in DOS. The sericite of SMS was converted into SiO2 to enhance wear resistance, while that of CSMS only partially generated SiO2, and the rest still remained on the surface to reduce friction.

Originality/value

This work provides a more effective SMS catalytical way for DOS synthesis than the traditional inorganic acid catalytical method. SMS does not need to be separated after reaction and can be dispersed directly in DOS as a lubricant additive. Replacing SMS with CSMS can produce a more stable suspension and reduce friction significantly. This work combined the advantages of surface carboxylation modification and in situ catalytic dispersion and provided alternatives for the synthesis of DOS and the dispersion of MoS2-based lubricant additives.

Details

Industrial Lubrication and Tribology, vol. 76 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Available. Open Access. Open Access
Article
Publication date: 14 October 2022

Zhixiang Chen

This paper is to explore how cross-functional integration (CFI) of production-marketing can impact the firm's build-to-order (BTO) competitiveness, marketing performance (MP) and…

1607

Abstract

Purpose

This paper is to explore how cross-functional integration (CFI) of production-marketing can impact the firm's build-to-order (BTO) competitiveness, marketing performance (MP) and financial performance (FP).

Design/methodology/approach

Empirical study with the structural equation modeling approach is applied. Six hypotheses are constructed and tested based on survey data collected from Chinese manufacturing firms.

Findings

The survey data supports that production-marketing integration (PMI) improves BTO competitiveness (BTOC) and MP and that BTOC also positively affects marketing outcome which, in turn, impacts a firm's FP. The results reveal that CFI of production-marketing is an effective approach for achieving the BTO manufacturing strategy and can improve organizational performance.

Originality/value

The paper uncovers the role of CFI of production-marketing in BTO manufacturing strategy and its impacts on a firm's MP and FP and provides important managerial implications for practitioners to improve organizational time-based competitiveness and performance in today's time-based competition era.

Details

European Journal of Management Studies, vol. 27 no. 2
Type: Research Article
ISSN: 2183-4172

Keywords

Access Restricted. View access options
Article
Publication date: 31 July 2019

Wei Jiang, Yu Yan, An Zhang, Lianqing Yu, Gan Zuo, Hong Jun Li and Wei Chen

The purpose of this paper is to improve the operation and maintenance intelligence of power systems, and summarize the transmission line robots and their key technologies…

418

Abstract

Purpose

The purpose of this paper is to improve the operation and maintenance intelligence of power systems, and summarize the transmission line robots and their key technologies. High-voltage power cables are important channels for power transmission systems. Their special geographical environment and harsh natural environment can lead to many different faults. At present, such special operations in dangerous and harsh environments are performed manually, which have not only high labor intensity and low work efficiency but also great personal safety risks.

Design/methodology/approach

For maintenance works that are far away from the tower, power outages are required. With the increasing evaluation of transmission quality and operational safety, and the urgent need for automation and operation of modern power systems, the contradiction between this manual operation and modern high-quality power transmission has become increasingly prominent. An effective method to replace the manual maintenance work is to use the mobile robot to carry the operation manipulator and its end tool, that is, the live maintenance robot.

Findings

Some achievements have been made in the key technologies of live maintenance robots, the work to be done to meet the basic requirements of complex and changeable line environment and practical application. Based on the existing research results of live overhaul robot, the follow-up research will focus on the practical application needs and the frontier of scientific and technological development, and truly realize the human–machine integration between live overhaul robot–human working environment. Only in this way can the robot better serve the operation and maintenance of the power system.

Originality/value

This paper reviews the system platform, operation function, structural characteristics and key technologies involved in the power cable robot, and the combination of live maintenance robots and modern high-tech such as big data and cloud computing is also given, and finally, the future development direction of the special operation robot is pointed out.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Access Restricted. View access options
Article
Publication date: 21 March 2016

Tao Liu, Zhixiang Fang, Qingzhou Mao, Qingquan Li and Xing Zhang

The spatial feature is important for scene saliency detection. Scene-based visual saliency detection methods fail to incorporate 3D scene spatial aspects. This paper aims to…

205

Abstract

Purpose

The spatial feature is important for scene saliency detection. Scene-based visual saliency detection methods fail to incorporate 3D scene spatial aspects. This paper aims to propose a cube-based method to improve saliency detection through integrating visual and spatial features in 3D scenes.

Design/methodology/approach

In the presented approach, a multiscale cube pyramid is used to organize the 3D image scene and mesh model. Each 3D cube in this pyramid represents a space unit similar to a pixel in the image saliency model multiscale image pyramid. In each 3D cube color, intensity and orientation features are extracted from the image and a quantitative concave–convex descriptor is extracted from the 3D space. A Gaussian filter is then used on this pyramid of cubes with an extended center-surround difference introduced to compute the cube-based 3D scene saliency.

Findings

The precision-recall rate and receiver operating characteristic curve is used to evaluate the method and other state-of-art methods. The results show that the method used is better than traditional image-based methods, especially for 3D scenes.

Originality/value

This paper presents a method that improves the image-based visual saliency model.

Details

Sensor Review, vol. 36 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Access Restricted. View access options
Article
Publication date: 16 March 2022

Xiaoxing Liang and Zhixiang Zhou

With the rapid economic growth and urbanization development, regional environmental problems have attracted increasing attention. The study on analyzing cities’ capacity on…

81

Abstract

Purpose

With the rapid economic growth and urbanization development, regional environmental problems have attracted increasing attention. The study on analyzing cities’ capacity on resource utilization and environmental protection is practically significant because of the industrial agglomeration in an urban area. This study aims to measure environmental efficiency of urban industrial water utilization by comparing input, output and undesirable outputs variables of cities.

Design/methodology/approach

This paper combines data envelopment analysis basic approach with regression to discover the environmental efficiency score of cities and their influence factors. A set of slack-based measure (SBM) model is constructed for calculating the environmental efficiency score by considering both desirable and unendurable outputs.

Findings

This paper analyzes the industrial water utilization efficiency for China from the city level by evaluating the performance for up to 200 mainland Chinese cities during 2012–2016 under SBM model. Then, 2C Tobit regression is used to measure the determining factors of industrial water utilization efficiency from the angle of natural, social, municipal and industrial structure factors. The empirical study results show huge room for improvement in industrial water utilization in China, while the average citizen efficiency scores maintain a level of about 0.5.

Originality/value

Significant differences exist in the regional efficiency in different cities in China. Per capita GDP, a total length of drainage pipe and whether the area is coastal or not have significant positive impacts on the water utilization efficiency, while the proportion of secondary industry to GDP has a significant negative influence. Specific recommendations are proposed based on the local industrial water utilization efficiency scores, such as improving urban infrastructure and adopting a more flexible water pricing system.

Details

Management of Environmental Quality: An International Journal, vol. 33 no. 4
Type: Research Article
ISSN: 1477-7835

Keywords

Access Restricted. View access options
Article
Publication date: 12 January 2023

Zhixiang Chen

The purpose of this paper is to propose a novel improved teaching and learning-based algorithm (TLBO) to enhance its convergence ability and solution accuracy, making it more…

167

Abstract

Purpose

The purpose of this paper is to propose a novel improved teaching and learning-based algorithm (TLBO) to enhance its convergence ability and solution accuracy, making it more suitable for solving large-scale optimization issues.

Design/methodology/approach

Utilizing multiple cooperation mechanisms in teaching and learning processes, an improved TBLO named CTLBO (collectivism teaching-learning-based optimization) is developed. This algorithm introduces a new preparation phase before the teaching and learning phases and applies multiple teacher–learner cooperation strategies in teaching and learning processes. Applying modularization idea, based on the configuration structure of operators of CTLBO, six variants of CTLBO are constructed. For identifying the best configuration, 30 general benchmark functions are tested. Then, three experiments using CEC2020 (2020 IEEE Conference on Evolutionary Computation)-constrained optimization problems are conducted to compare CTLBO with other algorithms. At last, a large-scale industrial engineering problem is taken as the application case.

Findings

Experiment with 30 general unconstrained benchmark functions indicates that CTLBO-c is the best configuration of all variants of CTLBO. Three experiments using CEC2020-constrained optimization problems show that CTLBO is one powerful algorithm for solving large-scale constrained optimization problems. The application case of industrial engineering problem shows that CTLBO and its variant CTLBO-c can effectively solve the large-scale real problem, while the accuracies of TLBO and other meta-heuristic algorithm are far lower than CLTBO and CTLBO-c, revealing that CTLBO and its variants can far outperform other algorithms. CTLBO is an excellent algorithm for solving large-scale complex optimization issues.

Originality/value

The innovation of this paper lies in the improvement strategies in changing the original TLBO with two-phase teaching–learning mechanism to a new algorithm CTLBO with three-phase multiple cooperation teaching–learning mechanism, self-learning mechanism in teaching and group teaching mechanism. CTLBO has important application value in solving large-scale optimization problems.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Access Restricted. View access options
Article
Publication date: 12 February 2019

Shao Xiao, Zhixiang Chen and Bhaba R. Sarker

Equipment reliability significantly impacts productivity, and in order to obtain high equipment reliability and productivity, maintenance and production decision should be made…

250

Abstract

Purpose

Equipment reliability significantly impacts productivity, and in order to obtain high equipment reliability and productivity, maintenance and production decision should be made simultaneously to keep manufacturing system healthy. The purpose of this paper is to investigate the joint optimization of equipment maintenance and production decision for k-out-of-n system equipment with attenuation of product quality and to explore the impact of maintenance on the production and cost control for manufacturers.

Design/methodology/approach

A multi-period Markov chain model for k-out-of-n system equipment is set up based on the assumption that the deterioration of equipment is a pure birth process. Then, the maintenance cost, setup cost, inventory holding cost, shortage cost, production cost and the quality cost are analyzed with the uncertain demand and the attenuation of product quality stemmed from equipment deterioration. The total lowest cost per unit time and its specific calculation method are presented. Finally, the robustness and flexibility of the method are verified by a numerical example and the effects of equipment deterioration intensity and attenuation of product quality are analyzed.

Findings

The result shows that the joint decision model could not only satisfy the uncertain demand with low cost and strong robustness but also make the output products high quality level. In addition, the attenuation of product quality would influence the equipment maintenance and production decision and leads to the production waste and increases the operation cost greatly.

Originality/value

Implications derived from this study can help production maintenance managers and reliability engineers adequately select maintenance policy to improve the equipment efficiency and productivity with high quality level at a relatively low cost.

Details

International Journal of Quality & Reliability Management, vol. 36 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 10 of 11
Per page
102050