Search results

1 – 10 of 29
Article
Publication date: 7 January 2025

Sixiao Gao, Yinsheng Liao and Zhiming Hu

With rapid market customized demand and short development cycles, mixed production with multiple classes and variable batches has been popular, and its buffer allocation problem…

Abstract

Purpose

With rapid market customized demand and short development cycles, mixed production with multiple classes and variable batches has been popular, and its buffer allocation problem has become a new challenge. The mixed production cannot be analyzed based on the assumption of a stationary demand process which was typically used in previous studies. Furthermore, mixed production is still in human–machine cooperation mode where dynamic working efficiency because of workers’ fatigue causes uncertain processes. Therefore, the purpose of this study is to solve the buffer allocation problem in mixed production systems with multiple classes, variable batch sizes and worker fatigue considerations.

Design/methodology/approach

A dynamic modeling method of mixed production with multiple classes and variable batches is improved, which uses nonstationary demand processes to model the dynamic nature of multiple classes and variable batches. Human working efficiency decreasing due to fatigue is modeled as the time-varying service rate to represent human–machine cooperation. Furthermore, a parallel evolutionary algorithm that combines global and local search strategies parallelly is developed to solve the buffer allocation problem in mixed production for the first time.

Findings

Numerical examples demonstrate the efficacy of the proposed algorithm. The proposed algorithm achieves better solution quality than the state of art algorithms.

Originality/value

This study improves the dynamic modeling of mixed production to consider human factors and develops a hybrid algorithm to effectively solve the buffer allocation problem in dynamic mixed production.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 16 July 2024

Zhen Tian, Tauchid Komara Yuda and Zhiming Hu

This article focuses on the continuity and changes in the Productive Welfare Regimes and investigates how the COVID-19 pandemic and population ageing can influence the established…

Abstract

Purpose

This article focuses on the continuity and changes in the Productive Welfare Regimes and investigates how the COVID-19 pandemic and population ageing can influence the established systems in Hong Kong, South Korea, Singapore and Taiwan.

Design/methodology/approach

Our research is based on document review, investigating intricate situations with numerous aspects and providing an excellent opportunity for innovation and examining theoretical presumptions in welfare regime theory, as well as exploring the complicated policy trajectories that varies among cases.

Findings

Our findings reveal that social policy responses to COVID-19 have been characterized by adopting the market-conforming role of social policy for the elderly. This is shown by many policy measures focusing on self-sufficiency and an active labour market, signalling that the COVID-19 pandemic and population ageing pressure here are viewed as an economic issue over social rights. The economic-first was adopted to maintain their proximity to the global economy as key sources of their social policy development. We can conclude by emphasizing that the responses to COVID-19 have exposed deficiencies in certain existing social policies. Yet, they have not been sufficient to catalyse substantial policy changes across domains where such change had not already been initiated, thus allowing welfare regimes to remain within productivist boundaries.

Originality/value

This study responds to the current debate on the welfare regime continuity and adaptation in East Asia and suggests a new perspective of policy process in the times of insecurity.

Details

International Journal of Sociology and Social Policy, vol. 44 no. 11/12
Type: Research Article
ISSN: 0144-333X

Keywords

Article
Publication date: 24 April 2024

Dejing Zhou, Yanming Xia, Zhiming Gao and Wenbin Hu

This study aims to investigate the influence mechanism of brazing and aging on the strengthening and corrosion behavior of novel multilayer sheets (AA4045/AA7072/AA3003M/AA4045).

55

Abstract

Purpose

This study aims to investigate the influence mechanism of brazing and aging on the strengthening and corrosion behavior of novel multilayer sheets (AA4045/AA7072/AA3003M/AA4045).

Design/methodology/approach

Polarization curve tests, immersion experiments and transmission electron microscopy analysis were used to study the corrosion behavior and tensile properties of the sheets before and after brazing and aging.

Findings

The strength of the sheet is weakened after brazing due to brittle eutectic phases, and recovered after aging due to enhanced precipitation strengthening in the AA7072 interlayer. The core of nonbrazed sheets cannot be protected due to the significant galvanic coupling effect between the intermetallic particles and the substrate. Brazing and aging treatments promote the redissolved of second phased and limit corrosion along the eutectic region in the clad, allowing the core to be protected.

Originality/value

AA7xxx alloy was added to conventional brazed sheets to form a novel Al alloy composite sheet with AA4xxx/AA7xxx/AA3xxx structure. The strengthening and corrosion mechanism of the sheet was proposed. The added interlayer can sacrificially protect the core from corrosion and improves strength after aging treatment.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 January 2023

Dejing Zhou, Mingyang Wang, Yuanyuan Ji, Zhe Liu, Zhiming Gao, Wenbin Hu and Yuhua Guo

This paper aims to investigate the electrochemical corrosion behavior of a five-layer Al alloy composites (4343/4047/3003/4047/4343) with a thickness of 0.2 mm in NaCl solution.

Abstract

Purpose

This paper aims to investigate the electrochemical corrosion behavior of a five-layer Al alloy composites (4343/4047/3003/4047/4343) with a thickness of 0.2 mm in NaCl solution.

Design/methodology/approach

Electrochemical impedance spectroscopy, polarization curve and morphology analyses were used to study the corrosion behavior of the Al alloy composites from cross-sectional and plane directions.

Findings

The corrosion resistance of the surface from the plane direction was higher than that from the cross sections. Si-enrich particles were observed in the outer 4047/4343 layer, and AlFeCuMnBi phases were identified in the core 3003 layer. The galvanic coupling between the Si-enrich particle and the Al matrix accelerated the dissolution Al matrix.

Originality/value

This work lays the experimental foundation for corrosion mechanism of the Al alloy composite plate.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 7 November 2022

Lupeng Liu, Senlin Li, Zhiming Gao, Hang Jia and Wenbin Hu

This paper aims to study the effect of chloride concentration on the properties of passive film formed on Q235 steel in simulated concrete pore solutions.

Abstract

Purpose

This paper aims to study the effect of chloride concentration on the properties of passive film formed on Q235 steel in simulated concrete pore solutions.

Design/methodology/approach

Mott–Schottky analysis and electrochemical impedance spectroscopy were used to study the passive film of Q235 steel in simulated concrete pore solution. X-ray photoelectron spectroscopy was used to analyze the composition of passive film on Q235 steel.

Findings

When the chloride concentration is below the chloride threshold value, open circuit potential (OCP) and Rct gradually increases and donor concentration (ND) remains unchanged with the increasing immersion time. When the chloride concentration exceeds chloride threshold value, OCP and Rct decreases after a temporary increase and ND increases. The linear region of the Mott–Schottky curve lost its linearity. The electrochemical process control step is changed from charge transfer control to oxygen diffusion control. As the chloride concentration increases, the FeO content in the passive film increases and the Fe2O3 content decreases. Chloride can destroy the outer layer of passive film and introduce impurities.

Originality/value

The effects of chloride and immersion time on the change process of passive films on Q235 steel in simulated concrete pore solution were studied using electrochemical methods. The mechanism of chloride destroying passive film was analyzed.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 17 March 2022

Yanming Xia, Dejing Zhou, Zhiming Gao and Wenbin Hu

This paper aims to study the effect of Hg2+ on the corrosion behavior of Al–2%Zn coatings on AA5083 in 3.5 Wt.% NaCl solution.

Abstract

Purpose

This paper aims to study the effect of Hg2+ on the corrosion behavior of Al–2%Zn coatings on AA5083 in 3.5 Wt.% NaCl solution.

Design/methodology/approach

Potentiodynamic polarization and electrochemical impedance spectroscopy are used to investigate the effect of Hg2+ on the corrosion behavior. The surface and cross-sectional morphology are characterized by scanning electron microscopy and energy dispersive spectroscopy (EDS) to further reveal the corrosion mechanism of Hg2+.

Findings

The results show that the corrosion behavior of the coating changes significantly as the concentration of Hg2+ increases from 5 to 30 μg/L. The corrosion production film can inhibit the corrosion process when Hg2+ concentration is in the range of 0.5–5 μg/L, while Hg2+ can promote the corrosion process significantly when its concentration reaches to 30 μg/L. The generation rate of dense oxide film on the coating surface is faster than dissolution rate when the concentration of Hg2+ is in the range of 0–5 μg/L, which makes the coating “self-healing” and thus slightly slows down the corrosion rate. The EDS analysis shows that excessive Hg2+ are preferentially deposited at locations with inhomogeneous electrochemical properties, which in turn accelerates corrosion.

Originality/value

The corrosion resistance of Al-based coatings is significantly affected by Hg2+ in seawater. Thus, it is important to explain the corrosion mechanism of Al–2%Zn coatings under the combined effect of Hg2+ and Cl in 3.5 Wt.% NaCl solution.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 June 2023

Huiyi Xu, Zhiming Gao, Yang Yang and Wenbin Hu

The purpose of this study is to ensure the safe use of carbon fiber composite pressure vessels in the nuclear industry environment.

Abstract

Purpose

The purpose of this study is to ensure the safe use of carbon fiber composite pressure vessels in the nuclear industry environment.

Design/methodology/approach

This study investigated the degradation behaviors of carbon fiber reinforced composite (CFRP) using the specific corrosive media HF solution, with a focus on the damage to the surface epoxy layer. The degradation behaviors of CFRP in HF solution were examined by electrochemical methods and surface characterization, using HCl, NaCl and NaF solution for comparison.

Findings

The results showed that the specimen in HF solution will have a value of |Z|0.01 Hz one order of magnitude lower, a substantially lower contact angle, more breakage of the surface epoxy and the stronger O─H peak and weaker C─O─C peak in the Fourier transform infrared spectrum, indicating severe hydrolytic damage to the surface epoxy.

Originality/value

The work focuses on the degradation damage to CFRP surface epoxy by specific corrosive media HF.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 September 2020

Jian Song, Zhiming Gao, Chenxi Liu and Wenbin Hu

This paper aims to study the effect of flow rate (0.42∼2.09 m/s) on the corrosion behavior of WB36CN1 steel pipe in the simulated secondary circuit water environment (170°C, 6…

Abstract

Purpose

This paper aims to study the effect of flow rate (0.42∼2.09 m/s) on the corrosion behavior of WB36CN1 steel pipe in the simulated secondary circuit water environment (170°C, 6 mg/L ethanolamine + 100 µg/L NaCl), for which an autoclave was used to simulate the secondary circuit environment for carrying out related experiments.

Design/methodology/approach

The corrosion behaviors were studied by electrochemical methods, morphological observations and elemental analysis.

Findings

As flow rate increases, the amplitude of the current noise fluctuates increased, noise resistance Rn and spectral noise resistance Rsn decreased, the shear stress on the surface of WB36CN1 steel increases, the oxygen content on the surface decreases, the roughness becomes smaller. Meanwhile, the energy of energy distribution plot is concentrated at high frequencies under the three flow conditions, the slopes of current power spectral density curve approach 0 db/decade. This means that the oxide on the surface becomes less and corrosion rate increases with increasing flow rate. The corrosion type of WB36CN1 steel was uniform corrosion; the degree of uniform corrosion is higher at high flow rate.

Originality/value

The effect of flow rate on the corrosion behavior of WB36CN1 steel pipe in the secondary circuit water environment was studied by using electrochemical methods in the laboratory. The effect mechanism of flow rate for corrosion behavior was obtained.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 23 February 2024

Guangwei Liang, Zhiming Gao, Cheng-Man Deng and Wenbin Hu

The purpose of this study is to reveal the effect of nano-Al2O3 particle addition on the nucleation/growth kinetics, microhardness, wear resistance and corrosion resistance of…

Abstract

Purpose

The purpose of this study is to reveal the effect of nano-Al2O3 particle addition on the nucleation/growth kinetics, microhardness, wear resistance and corrosion resistance of Co–P–xAl2O3 nanocomposite plating.

Design/methodology/approach

The kinetics and properties of Co–P–xAl2O3 nanocomposite plating prepared by electroplating were investigated by electrochemical measurements, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Vickers microhardness measurement, SRV5 friction and wear tester and atomic force microscopy.

Findings

A 12 g/L nano-Al2O3 addition in the plating solution can transform the nucleation/growth kinetics of the plating from the 3D progressive model to the 3D instantaneous model. The microhardness of the plating increased with the increase of nano-Al2O3 content in plating. The wear resistance of the plating did not adhere strictly to Archard’s law. An even and denser corrosion product film was generated due to the finer grains, with a high corrosion resistance.

Originality/value

The effect of different nano-Al2O3 addition on the nucleation/growth kinetics and properties of Co–P–xAl2O3 nanocomposite plating was investigated, and an anticorrosion mechanism of Co–P–xAl2O3 nanocomposite plating was proposed.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 April 2024

Hang Jia, Zhiming Gao, Shixiong Wu, Jia Liang Liu and Wenbin Hu

This study aims to investigate the corrosion inhibitor effect of migrating corrosion inhibitor (MCI) on Q235 steel in high alkaline environment under cathodic polarization.

Abstract

Purpose

This study aims to investigate the corrosion inhibitor effect of migrating corrosion inhibitor (MCI) on Q235 steel in high alkaline environment under cathodic polarization.

Design/methodology/approach

This study investigated the electrochemical characteristics of Q235 steel with and without MCI by polarization curve and electrochemical impedance spectroscopy. Besides, the surface composition of Q235 steel under different environments was analyzed by X-ray photoelectron spectroscopy. In addition, the migration characteristic of MCI and the adsorption behavior of MCI under cathodic polarization were studied using Raman spectroscopy.

Findings

Diethanolamine (DEA) and N, N-dimethylethanolamine (DMEA) can inhibit the increase of Fe(II) in the oxide film of Q235 steel under cathodic polarization. The adsorption stability of DMEA film was higher under cathodic polarization potential, showing a higher corrosion inhibition ability. The corrosion inhibition mechanism of DEA and DMEA under cathodic polarization potential was proposed.

Originality/value

The MCI has a broad application prospect in the repair of damaged reinforced concrete due to its unique migratory characteristics. The interaction between MCIs, rebar and concrete with different compositions has been studied, but the passivation behavior of the steel interface in the presence of both the migrating electric field and corrosion inhibitors has been neglected. And it was investigated in this paper.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 29