Xingyuan Wang, Zhifeng Lou, Xiaodong Wang, Yue Wang, Xiupeng Hao and Zhize Wang
The purpose of this paper is to design an automatic press-fit instrument to realize precision assembly and connection quality assessment of a small interference fitting parts…
Abstract
Purpose
The purpose of this paper is to design an automatic press-fit instrument to realize precision assembly and connection quality assessment of a small interference fitting parts, armature.
Design/methodology/approach
In this paper, an automatic press-fit instrument was developed for the technical problems of reliable clamping and positioning of the armature, automatic measurement and adjustment of the attitude and evaluation of the connection quality. To compensate for the installation error of the equipment, corresponding calibration method was proposed for each module of the instrument. Assembly strategies of axial displacement and perpendicularity were also proposed to ensure the assembly accuracy. A theoretical model was built to calculate the resistant force generated by the non-contact regions and then combined with the thick-walled cylinder theory to predict the press-fit curve.
Findings
The calibration method and assembly strategy proposed in this paper enable the press-fit instrument to achieve good alignment and assembly accuracy. A reasonable range of press-fit curve obtained from theoretical model can achieve the connection quality assessment.
Practical implications
This instrument has been used in an armature assembly project. The practical results show that this instrument can assemble the armature components with complex structures automatically, accurately, in high-efficiency and in high quality.
Originality/value
This paper provides a technical method to improve the assembly quality of small precision interference fitting parts and provides certain methodological guidelines for precision peg-in-hole assembly.
Details
Keywords
Chongwei Li, Zening Wang, Chengcai Li, Shifeng Wen and Zhifeng Xie
Based on the pursuit of improving the temperature endurance capabilities of conventional superalloys for hot-end components, this paper aims to investigate the failure mechanisms…
Abstract
Purpose
Based on the pursuit of improving the temperature endurance capabilities of conventional superalloys for hot-end components, this paper aims to investigate the failure mechanisms of yttria-stabilized zirconia (YSZ) coatings fabricated by the atmospheric plasma spraying method at 1220 °C and 1260 °C.
Design/methodology/approach
Thermal spraying techniques are applied to produce thermal barrier coatings (TBCs) that offer superior thermal insulation, thermal shock resistance and thermal stability. The oxidation kinetics, the propagation patterns of cracks and the phase stability prior to failure of the coating were analyzed in detail.
Findings
The failure of coatings during static isothermal oxidation process is caused by slow crack initiation and propagation in the densification stage. External stress induces rapid initiation and propagation of cracks, leading to coating phase transformation. Cracks create pathways for oxygen diffusion and accelerate the growth of oxide layers.
Originality/value
This work aims to provide reliability data on the failure of TBCs, elucidate the high-temperature service characteristics of TBCs and provide theoretical basis for its performance improvement under extreme conditions.