Search results

1 – 5 of 5
Article
Publication date: 22 July 2024

Qiang Xiao, Liu Yi-Cong, Yue-Peng Zhou, Zhi-Hong Wang, Sui-Xin Fan, Jun-Hu Meng and Junde Guo

Given the current friction and wear challenges faced by automobile parts and bearings, this study aims to identify a novel texture for creating anti-friction and wear-resistant…

60

Abstract

Purpose

Given the current friction and wear challenges faced by automobile parts and bearings, this study aims to identify a novel texture for creating anti-friction and wear-resistant surfaces. This includes detailing the preparation process with the objective of mitigating friction and wear in working conditions.

Design/methodology/approach

Femtosecond laser technology was used to create a mango-shaped texture on the surface of GCr15 bearing steel. The optimized processing technology of the texture surface was obtained through adjusting the laser scanning speed. The tribological behavior of the laser-textured surface was investigated using a reciprocating tribometer.

Findings

The friction coefficient of the mango-shaped texture surface is 25% lower than that of the conventional surface, this can be attributed to the reduced contact area between the friction ball and the micro-textured surface, leading to stress concentration at the extrusion edge and a larger stress distribution area on the contact part of the ball and disk compared to the conventional surface and the function of the micro-texture in storing wear chips during the sliding process, thereby reducing secondary wear.

Originality/value

The mango-shaped textured surface in this study demonstrates effective solutions for some of the friction and wear issues, offering significant benefits for equipment operation under light load conditions.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0127/

Details

Industrial Lubrication and Tribology, vol. 77 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 2023

Satish Kumar, Arun Gupta, Anish Kumar, Pankaj Chandna and Gian Bhushan

Milling is a flexible creation process for the manufacturing of dies and aeronautical parts. While machining thin-walled parts, heat generation during machining essentially…

Abstract

Purpose

Milling is a flexible creation process for the manufacturing of dies and aeronautical parts. While machining thin-walled parts, heat generation during machining essentially affects the accuracy. The workpiece temperature (WT), as well as the responses like material removal rate (MRR) and surface roughness (SR) for input parameters like cutting speed (CS), feed rate (F), depth-of-cut (DOC), step over (SO) and tool diameter (TD), becomes critical for sustaining the accuracy of the thin walls.

Design/methodology/approach

Response surface methodology was used to make 46 tests. To convert the multi-character problem into a single-character problem, the weightage was assessed using the entropy approach and the grey relational coefficient (GRC) was determined. To investigate the connection among input parameters and single-objective (GRC), a fuzzy mathematical modelling technique was used. The optimal performance of process parameters was estimated by grey relational entropy grade (GREG)-fuzzy and genetic algorithm (GA) optimization.

Findings

SR was found to be a significant process parameter, with CS, feed and DOC, respectively. Similarly, F, DOC and TD were found to be significant process parameters with MRR, respectively, and F, DOC, SO and TD were found to be significant process parameters with WT, respectively. GREG-fuzzy-GA found more suitable for minimizing the WT with the constraint s of SR and MRR and provide maximum desirability of 0.665. The projected and experimental values have a good agreement, with a standard error of 5.85%, and so the responses predicted by the suggested method are better optimized.

Originality/value

The GREG-fuzzy-GA is a new hybrid technique for analysing Inconel625 behaviour during machining in a 2.5D milling process.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 October 2023

Camelia Delcea, Saad Ahmed Javed, Margareta-Stela Florescu, Corina Ioanas and Liviu-Adrian Cotfas

The Grey System Theory (GST) is an emerging area of research within artificial intelligence. Since its founding in 1982, it has seen a lot of multidisciplinary applications. In…

Abstract

Purpose

The Grey System Theory (GST) is an emerging area of research within artificial intelligence. Since its founding in 1982, it has seen a lot of multidisciplinary applications. In just a short period, it has garnered some considerable strengths. Based on the 1987–2021 data collected from the Web of Science (WoS), the current study reports the advancement of the GST.

Design/methodology/approach

Research papers utilizing the GST in the fields of economics and education were retrieved from the Web of Science (WoS) platform using a set of predetermined keywords. In the final stage of the process, the papers that underwent analysis were manually chosen, with selection criteria based on the information presented in the titles and abstracts.

Findings

The study identifies prominent authors, institutions, publications and journals closely associated with the subject. In terms of authors, two major clusters are identified around Liu SF and Wang ZX, while the institution with the highest number of publications is Nanjing University of Aeronautics and Astronautics. Moreover, significant keywords, trends and research directions have been extracted and analyzed. Additionally, the study highlights the regions where the theory holds substantial influence.

Research limitations/implications

The study is subject to certain limitations stemming from factors such as the language employed in the chosen literature, the papers included within the Web of Science (WoS) database, the designation of works categorized as “articles” in the database, the specific selection of keywords and keyword combinations, and the meticulous manual process employed for paper selection. While the manual selection process itself is not inherently limiting, it demands a greater investment of time and meticulous attention, contributing to the overall limitations of the study.

Practical implications

The significance of the study extends not only to scholars and practitioners but also to readers who observe the development of emerging scientific disciplines.

Originality/value

The analysis of trends revealed a growing emphasis on the application of GST in diverse domains, including supply chain management, manufacturing and economic development. Notably, the emergence of COVID-19 as a new research focal point among GST scholars is evident. The heightened interest in COVID-19 can be attributed to its global impact across various academic disciplines. However, it is improbable that this interest will persist in the long term, as the pandemic is gradually brought under control.

Details

Kybernetes, vol. 54 no. 2
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 19 March 2020

Shuliang Zhao, Yanhong Jiang, Xiaobao Peng and Jin Hong

Because the mechanism of how knowledge sharing affects organizational innovation is still unclear, the study focuses on the relationship between knowledge sharing and…

2982

Abstract

Purpose

Because the mechanism of how knowledge sharing affects organizational innovation is still unclear, the study focuses on the relationship between knowledge sharing and organizational innovation performance, with a focus on mediating role of absorptive capacity and individual creativity.

Design/methodology/approach

On the basis of the knowledge base view and organizational learning theory, the study propose a model to verify the impact of inbound and outbound knowledge sharing on organizational innovation performance based on previous research. It also analyzed how these effects were mediated by individual creativity and absorptive capacity. The study collected 166 samples to verify the theoretical model.

Findings

Results corroborate that inbound knowledge sharing cannot directly promote organizational innovation performance, and absorptive capacity has a full mediation effect between inbound knowledge sharing and organizational innovation performance. Knowledge outbound sharing, individual creativity and absorptive capacity can improve innovation performance. In addition, absorptive capacity and individual creativity have direct and significant impacts on organizational innovation performance. Moreover, absorptive capacity plays a partial mediate role between individual creativity and innovation performance. Finally, this study discusses the policy implications of the study and describes possible future research directions.

Originality/value

The paper creatively divides knowledge sharing into inbound knowledge sharing and outbound knowledge sharing and verifies that knowledge sharing does not directly affect organizational innovation performance. The mediating role of absorptive capacity and individual creativity was analysis.

Details

European Journal of Innovation Management, vol. 24 no. 2
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 12 October 2015

G K Bose

In the present research work electrochemical grinding (ECG) process is applied to machine Al2O3/Al interpenetrating phase composite. The purpose of this paper is to present a new…

Abstract

Purpose

In the present research work electrochemical grinding (ECG) process is applied to machine Al2O3/Al interpenetrating phase composite. The purpose of this paper is to present a new approach to optimize the ECG process parameters while machining alumina-aluminum (Al2O3 – Al) interpenetrating phase composites (IPC) used in automotive, aircraft and manufacture of space ships applying Taguchi-based experimental studies and fuzzy multi-criteria decision-making techniques.

Design/methodology/approach

The present work identifies the process variables that have significant consequences during ECG of Al2O3/Al IPC. The Taguchi L9 orthogonal array is selected for design of experiments and the analysis is carried out following signal to noise ratio. The analysis of variance is carried out to establish the factors that significantly influence the responses. The present work also investigates the multi objective optimization of ECG process parameters using VIseKriterijumsa Optimizacija I Kompromisno Resenje (VIKOR) and Grey relational analysis (GRA) to establish the reference ranking from a set of alternatives in the presence of conflicting criteria.

Findings

Material removal rate, surface finish, overcut and cutting force are shown to depend on the type of electrolyte, supply voltage, depth of cut and electrolyte flow rate. It is found that voltage and electrolyte concentration are important. The optimal machining parameter combination for ECG process is determined using fuzzy set theory, VIKOR and GRA. Substantial improvement in machining performance takes place.

Practical implications

A variety of manufacturing techniques are available for processing of Al2O3 – Al metal matrix composites. Generally manufacturers favor low cost modus operandi. Therefore ECG process is the best alternative for processing of MMCs in the present commercial sectors. The experimental investigation approach can act as useful and an efficient guideline for manufacturing.

Originality/value

The characteristic features of the ECG process are reflected through Taguchi design-based experimental studies with various process parametric combinations. Application of multi-response optimization technique for evaluation of best parametric combination for machining Al2O3 – Al IPC material using ECG process is a first-of-its-kind approach in literature.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 5 of 5