Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Available. Open Access. Open Access
Article
Publication date: 15 February 2024

Di Kang, Steven W. Kirkpatrick, Zhipeng Zhang, Xiang Liu and Zheyong Bian

Accurately estimating the severity of derailment is a crucial step in quantifying train derailment consequences and, thereby, mitigating its impacts. The purpose of this paper is…

532

Abstract

Purpose

Accurately estimating the severity of derailment is a crucial step in quantifying train derailment consequences and, thereby, mitigating its impacts. The purpose of this paper is to propose a simplified approach aimed at addressing this research gap by developing a physics-informed 1-D model. The model is used to simulate train dynamics through a time-stepping algorithm, incorporating derailment data after the point of derailment.

Design/methodology/approach

In this study, a simplified approach is adopted that applies a 1-D kinematic analysis with data obtained from various derailments. These include the length and weight of the rail cars behind the point of derailment, the train braking effects, derailment blockage forces, the grade of the track and the train rolling and aerodynamic resistance. Since train braking/blockage effects and derailment blockage forces are not always available for historical or potential train derailment, it is also necessary to fit the historical data and find optimal parameters to estimate these two variables. Using these fitted parameters, a detailed comparison can be performed between the physics-informed 1-D model and previous statistical models to predict the derailment severity.

Findings

The results show that the proposed model outperforms the Truncated Geometric model (the latest statistical model used in prior research) in estimating derailment severity. The proposed model contributes to the understanding and prevention of train derailments and hazmat release consequences, offering improved accuracy for certain scenarios and train types

Originality/value

This paper presents a simplified physics-informed 1-D model, which could help understand the derailment mechanism and, thus, is expected to estimate train derailment severity more accurately for certain scenarios and train types compared with the latest statistical model. The performance of the braking response and the 1-D model is verified by comparing known ride-down profiles with estimated ones. This validation process ensures that both the braking response and the 1-D model accurately represent the expected behavior.

Details

Smart and Resilient Transportation, vol. 6 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Available. Open Access. Open Access
Article
Publication date: 25 October 2021

Yun Bai, Saeed Babanajad and Zheyong Bian

Transportation infrastructure asset management has long been an active but challenging problem for agencies, which urges to maintain a good state of their assets but faces…

1157

Abstract

Purpose

Transportation infrastructure asset management has long been an active but challenging problem for agencies, which urges to maintain a good state of their assets but faces budgetary limitations. Managing a network of transportation infrastructure assets, especially when the number is large, is a multifaceted challenge. This paper aims to develop a life-cycle cost analysis (LCCA) based transportation infrastructure asset management analytical framework to study the impacts of a few key parameters/factors on deterioration and life-cycle cost. Using the bridge as an example infrastructure type, the framework incorporates an optimization model for optimizing maintenance, repair, rehabilitation (MR&R) and replacement decisions in a finite planning horizon.

Design/methodology/approach

The analytical framework is further developed through a series of model variations, scenario and sensitivity analysis, simulation processes and numerical experiments to show the impacts of various parameters/factors and draw managerial insights. One notable analysis is to explicitly model the epistemic uncertainties of infrastructure deterioration models, which have been overlooked in previous research. The proposed methodology can be adapted to different types of assets for solving general asset management and capital planning problems.

Findings

The experiments and case studies revealed several findings. First, the authors showed the importance of the deterioration model parameter (i.e. Markov transition probability). Inaccurate information of p will lead to suboptimal solutions and results in excessive total cost. Second, both agency cost and user cost of a single facility will have significant impacts on the system cost and correlation between them also influences the system cost. Third, the optimal budget can be found and the system cost is tolerant to budge variations within a certain range. Four, the model minimizes the total cost by optimizing the allocation of funds to bridges weighing the trade-off between user and agency costs.

Originality/value

On the path forward to develop the next generation of bridge management systems methodologies, the authors make an exploration of incorporating the epistemic uncertainties of the stochastic deterioration models into bridge MR&R capital planning and decision-making. The authors propose an optimization approach that does not only incorporate the inherent stochasticity of bridge deterioration but also considers the epistemic uncertainties and variances of the model parameters of Markovian transition probabilities due to data errors or modeling processes.

1 – 2 of 2
Per page
102050