Search results

1 – 10 of 28
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 21 November 2018

Dong Guan, Li Jing, Junjie Gong, Zhengwei Yang and Hui Shen

Rotary disc is a key component in the compact spherical pump, connecting shaft and piston, bearing hydraulic force conformally and constituting dynamic working chambers…

163

Abstract

Purpose

Rotary disc is a key component in the compact spherical pump, connecting shaft and piston, bearing hydraulic force conformally and constituting dynamic working chambers alternatively. Motion of rotary disc comprises two components. One is rotating around its own axis and the other is sliding on a cone surface. Therefore, it is necessary to investigate the friction and wear mechanism between rotary disc and cylinder under a complicated operation condition.

Design/methodology/approach

Structural properties of rotary disc are analyzed first. Frictional moment of rotary disc is modeled based on its structural characteristics and working mechanism, and the constraints of the structural parameters are considered. Besides, the concept of dimensionless contact area is proposed. Comparison is performed between the proposed concept and the frictional moment to determine an optimized beginning angle for spherical pump with a given displacement. The wear model of rotary disc is also established based on its kinematic property, a velocity coefficient is proposed and its common values are presented.

Findings

Effects of structural parameters, i.e. beginning angle and ending angle on the frictional moment, are obtained quantitatively. The frictional moment increases with beginning and ending angle with different rates. While the dimensionless contact area decreases with beginning angle. The larger the piston angle, the larger the velocity coefficient will be. The rotary disc wears severely with a larger beginning angle and smaller ending angle, while it has the smallest wear rate under a smaller beginning angle and a larger ending angle.

Originality/value

The originality lies in modeling the complex contact force of rotary disc based on its specific structure. These conclusions can be used to optimize the structural parameters of rotary disc.

Details

Industrial Lubrication and Tribology, vol. 71 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 10 August 2018

Dong Guan, Harry H. Hilton, Zhengwei Yang, Li Jing and Kuan Lu

This paper aims to investigate the lubrication regime in spherical pump, especially under different structural parameters and operational conditions.

96

Abstract

Purpose

This paper aims to investigate the lubrication regime in spherical pump, especially under different structural parameters and operational conditions.

Design/methodology/approach

A ball-on-plane configuration is adopted to represent the contact model between spherical piston and cylinder cover. The governing equations, which include the Reynolds and elasticity equations, are solved and validated by Jin–Dowson model. Both minimum film thickness and lambda ratio (ratio of minimum fluid film thickness to combined surface roughness of the piston and cylinder cover) of the equivalent model are obtained using an established model.

Findings

The results indicate that piston diameter and radial clearance are the two main factors affecting the pump lubrication regime. Other related parameters such as rotation speed of the piston, load, viscosity of working medium, material matching and surface roughness of piston and cylinder cover also have different impacts on the lubrication regime of the spherical pump.

Originality/value

These results emphasize the importance of the design and manufacturing parameters on the tribological performance of spherical pumps and these are also helpful in improving the spherical pump lubrication regime and enlarging its life cycle. This is to certify that to the best of the authors’ knowledge, the content of this manuscript is their own work. This manuscript has only been submitted to this journal and never been published elsewhere. The authors certify that the intellectual content of this manuscript is the product of their own work and that all the assistance received in preparing this manuscript and sources has been acknowledged.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 18 February 2022

Jasvinder Singh, Pulak Mohan Pandey, Tejinder Kaur and Neetu Singh

The purpose of this paper is to fabricate pre-existing geometries of the stents using solvent cast 3D printing (SC3P) and encapsulation of each stent with heparin drug by using…

283

Abstract

Purpose

The purpose of this paper is to fabricate pre-existing geometries of the stents using solvent cast 3D printing (SC3P) and encapsulation of each stent with heparin drug by using aminolysis reaction.

Design/methodology/approach

The iron pentacarbonyl powder and poly-ɛ-caprolactone blend (PCIP) were used to print stent designs of Art18z, Palmaz-Schatz and Abbott Bvs1.1. The properties of antithrombosis, anticoagulation and blood compatibility were introduced in the stents by conjugation of heparin drug via the aminolysis process. The aminolysis process was confirmed by energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy due to presence of amide group and nitrogen peak in the respective analysis. Biological studies were performed to depict the cell viability, hemocompatibility and antithrombotic properties. Besides, mechanical behaviors were analyzed to study the behavior of the stents under radial compression load and bending load.

Findings

The amount of heparin immobilized on the Art18z, Palmaz-Schatz and Abbott Bvs1.1 stents were 255 ± 27, 222 ± 30 and 212 ± 13 µg, respectively. The cell viability studies using L929 fibroblast cells confirmed the cytocompatibility of the stents. The heparinized SC3P printed stents displayed excellent thrombo-resistance, anticoagulation properties and hemocompatibility as confirmed by blood coagulation analysis, platelet adhesion test and hemolysis analysis. Besides, mechanical behavior was found in context of the real-life stents. All these assessments confirmed that the developed stents have the potential to be used in the real environment of coronary arteries.

Originality/value

Various customized shaped biodegradable stents were fabricated using 3D printing technique and encapsulated with heparin drug using aminolysis process.

Access Restricted. View access options
Article
Publication date: 10 July 2018

Jing Yang, Qingjuan Hu, Zhengwei Wang, Jinghuan Ding and Xianyu Jiang

For Francis turbine, the vortex flow in the draft tube plays an important role in the safe and efficient operating of hydraulic turbine. The swirling flow produced at the blade…

139

Abstract

Purpose

For Francis turbine, the vortex flow in the draft tube plays an important role in the safe and efficient operating of hydraulic turbine. The swirling flow produced at the blade trailing edge at off-design conditions has been proved to be the fundamental reason of the vortex flow. Exploring the swirling flow variations in the non-cavitation flow and cavitation flow field is an effective way to explain the mechanism of the complex unsteady flow in the draft tube.

Design/methodology/approach

The swirling flow in different cavitation evolution stages of varying flow rates was studied. The swirl number, which denotes the strength of the swirling flow, was chosen to systematically analyze the swirling flow changes with the cavitation evolutions. The Zwart–Gerber–Blemari cavitation model and SST turbulence model were used to simulate the two-phase cavitating flow. The finite volume method was used to discrete the equations in the unsteady flow field simulation. The Frozen Rotor Stator scheme was used to transfer the data between the rotor-stator interfaces. The inlet total pressure was set to inlet boundary condition and static pressure was set to outlet boundary condition.

Findings

The results prove that the mutual influences exist between the swirling flow and cavitation. The swirling flow was not only affected by the load but also significantly changed with the cavitation development, because the circumferential velocity decrease and axial velocity increase presented with the cavitation evolution. At the high load conditions, the system stability may improve with the decreasing swirling flow strength.

Research limitations/implications

Further experimental and simulation studies still need to verify and estimate the reasonability of the swirling flow seen as the cavitation inception signal.

Originality/value

One interesting finding is that the swirl number began to change as the inception cavitation appeared. This is meaningful for the cavitation controlling in the Francis turbine.

Details

Engineering Computations, vol. 35 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 19 September 2024

Xin Zhao and Zhengwei Li

Social media is booming in the digital age, and its rich availability provides many opportunities for companies to innovate across borders. In reality, how enterprises use social…

57

Abstract

Purpose

Social media is booming in the digital age, and its rich availability provides many opportunities for companies to innovate across borders. In reality, how enterprises use social media to achieve cross-border innovation also faces important challenges such as breaking path dependency.

Design/methodology/approach

This paper explores how social media can facilitate cross-border innovation from the perspective of strategic capability, combined with the path dependency theory and attention-based view. Hierarchical regression analysis and bootstrap method are adopted to test the hypotheses based on survey data provided by 173 firms in China.

Findings

The findings show a positive relationship between social media strategic capability and cross-border innovation, with path dependency playing a mediating role. In addition, two internal and external contextual factors, namely customer embeddedness and competitive pressure, play moderating roles, with customer embeddedness negatively moderating the negative relationship between social media strategic capability and path dependency and competitive pressure negatively moderating the negative relationship between path dependency and cross-border innovation.

Originality/value

These findings provide not only new insights into social media and cross-border innovation but also theoretical guidance on how companies can effectively use social media in practice.

Details

Business Process Management Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-7154

Keywords

Access Restricted. View access options
Article
Publication date: 28 April 2014

Min He, Lingli Yuan, Lingjiu Zhou, Jing Yang and Zhengwei Wang

Studies of the three-dimensional flow characteristics during hydrofoil cavitation have shown that the side walls strongly affect the flow field around the hydrofoil. The purpose…

186

Abstract

Purpose

Studies of the three-dimensional flow characteristics during hydrofoil cavitation have shown that the side walls strongly affect the flow field around the hydrofoil. The purpose of this paper is to analyze the side wall effect for three-dimensional non-cavitating flows around a hydrofoil.

Design/methodology/approach

A three-dimensional non-cavitating flow field around a hydrofoil is analyzed for different attack angles using the RNG turbulence model and large eddy simulations (LES). The effect of the hydrofoil span was analyzed using LES simulations for various spans.

Findings

The lift coefficient, drag coefficient and pressure coefficient on the suction side are compared with experimental values. The results from the LES model (Smagorinsky-Lilly subgrid-scale model) agree better with the experimental data than those from the RNG turbulence model.

Originality/value

This paper shows that the flow around the hydrofoil has significant three-dimensional characteristics due to the side wall. For wide hydrofoils, the wall vortex region becomes essentially stable, and the width of the span has little effect on the middle region.

Details

Engineering Computations, vol. 31 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 15 February 2022

Zhengwei Li, Chenye Qiu, Kai Zeng and Feirong Wang

Empowering leadership is often considered unequivocally positive for employees, but recent studies have shown that this ostensibly straightforward effect is more complex. The dual…

1142

Abstract

Purpose

Empowering leadership is often considered unequivocally positive for employees, but recent studies have shown that this ostensibly straightforward effect is more complex. The dual facets of the effect of empowering leadership – especially on employees’ innovative behaviour – have received insufficient attention. Based on job demand-resource (JD-R) theory, this study aims to propose a theoretical framework for the relationship between empowering leadership and employees’ innovative behaviours with a dual process model of gain and loss.

Design/methodology/approach

This study is survey based, with 261 paired leader–employee data points collected in the People’s Republic of China.

Findings

The results show that empowering leadership has a “double-edged” effect on employees’ innovative behaviours: it affects innovative behaviours positively through employee job engagement and negatively through emotional exhaustion. Moreover, trust in leaders moderates the mediating roles of job engagement and emotional exhaustion.

Originality/value

This study contends that empowering leadership has a dual impact on employees and proposes a promising model of this double-edged effect to contrast with other complex models in the empowering leadership literature. Furthermore, this study uses JD-R theory to deeply explore the dual process whereby empowering leadership influences employees’ innovative behaviour and provides practical guidance for business management.

Details

Chinese Management Studies, vol. 17 no. 2
Type: Research Article
ISSN: 1750-614X

Keywords

Access Restricted. View access options
Article
Publication date: 7 March 2016

Jing Yang, Lingjiu Zhou and Zhengwei Wang

The vortex ropes in draft tube of Francis turbine always cause fluctuation and vibration, which consequently threaten the safety and stability of hydro turbines. The purpose of…

433

Abstract

Purpose

The vortex ropes in draft tube of Francis turbine always cause fluctuation and vibration, which consequently threaten the safety and stability of hydro turbines. The purpose of this paper is to use a cavitation flow computational method to simulate spiral vortex ropes under part load conditions and columnar vortex ropes under high-load conditions in draft tube. The unsteady cavitating flow characteristics in draft tube and its interaction with runner cavitation were analyzed.

Design/methodology/approach

The calculation method was verified by cavitation simulation around a 3D hydrofoil. The results show that the Large Eddy Simulation (LES) turbulence model with the Zwart-Gerber-Blemari cavitation model have comparative advantage in cavitation simulations whether from capture of cavity shape or prediction of pressure changes. So it was chosen to simulate the two-phase cavitation flow in Francis turbine. The boundary conditions for inlet and outlet were set to inlet total pressure and outlet static pressure. The finite volume method with the central difference was adopted to discretize the equations.

Findings

The calculated Thoma number agreed well with the experimental data. The vortex rope diameter and length increased with the cavitation development for both of the two types of vortex ropes conditions. The maximum peak-to-peak values of pressure pulsations located in the draft tube elbow part under all of the Thoma numbers conditions. Under spiral vortex rope conditions, the pressure pulsation in the same section of draft tube cone show obviously phase shift. The vortex rope affects the development of runner cavitation, which induces the symmetric and axisymmetric cavitation region in the suction side of blades for spiral and columnar vortex rope condition, respectively.

Research limitations/implications

The mesh independence had been checked only in non-cavitation flow; in addition, the mesh density did not well satisfy the requirements of LES due to the limitations of computing power. The higher mesh density on a simplified model with one blade flow path and the entire draft tube may be helpful for obtaining more precise results.

Originality/value

The spiral and columnar vortex ropes in a Francis turbine were compared and analyzed. The annular hydraulic jump appeared in the columnar vortex rope conditions has little effects on the pressure pulsations. The uneven flow field caused by spiral vortex led to the asymmetric cavitation development.

Details

Engineering Computations, vol. 33 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 29 March 2013

Jing Yang, Long Meng, Lingjiu Zhou, Yongyao Luo and Zhengwei Wang

Thermal power plants have many problems regarding noise and vibration. Previous studies have shown that such problems are often related to the fans. However, the internal flows…

432

Abstract

Purpose

Thermal power plants have many problems regarding noise and vibration. Previous studies have shown that such problems are often related to the fans. However, the internal flows are difficult to analyze to find the cause of vibration and noise in fans in actual tests. Therefore, the unsteady internal flow field in a centrifugal fan was simulated numerical to identify the source. This paper aims to present these issues.

Design/methodology/approach

The unsteady Reynolds‐averaged Navier‐Stokes equations with the SST k‐ω turbulence model were solved to simulate the flow within the entire flow path of the fan. The conservation of mass and moment and energy equations were used to solve the flow field distribution. The time‐dependent pressure pulsations on the impeller were analyzed for the dynamics problem. The finite volume method with the SIMPLEC algorithm was used to discretize the time‐dependent equations. The second‐order upwind scheme was used for the convection terms and the central difference scheme was chosen for the diffusion terms in the momentum and transport equations.

Findings

The numerical simulations illustrated the flow characteristics inside the double suction centrifugal fan. The predicted efficiency is almost the same as the experimental value. The estimated pressure and temperature fields are quite reasonable. The results showed that the interaction between the non‐uniform impeller flow and the fixed volute aroused the significant pressure fluctuations, which is an important source of vibration and noise in centrifugal machinery.

Research limitations/implications

It is assumed that there is no change in the density in the whole flow passage, and the predicted outlet temperature is about 1.15 per cent lower than the experimental result.

Originality/value

The simulation study indicates that the prediction of noise is possible by using pressure pulsation. It is recommended to control the pressure pulsation in the fans, to decrease the vibration and noise of thermal power plants.

Details

Engineering Computations, vol. 30 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 7 March 2016

Long Meng, Min He, Lingjiu Zhou, Jing Yang, Zhengwei Wang and Bryan Karney

– The purpose of this paper is to analyze the cavitation dynamics in the blade channel of a centrifugal pump with a particular focus on the direct influence of the pump’s volute.

474

Abstract

Purpose

The purpose of this paper is to analyze the cavitation dynamics in the blade channel of a centrifugal pump with a particular focus on the direct influence of the pump’s volute.

Design/methodology/approach

A homogeneous multiphase model, namely the Zwart-Gerber-Belamri cavitation model, is employed to numerically describe the evolution of the process of cavitation within the pump. The RNG k-e turbulence model is applied to analyze the unsteady turbulent flow. A second order implicit formulation is used for the time discretization for the unsteady flow calculation and a finite volume algorithm is used for the space discretization.

Findings

The cavities in the passage exhibit an obvious life cycle which includes initiation, growth, contraction, and separation, and collapse with a frequency corresponding to the impeller rotation frequency under off-design conditions. This phenomenon arises through an alternating interaction between reverse flow with the cavity interface and is associated with the response of the vortex region to the effect of uneven pressure distribution on volute and impeller-tongue interaction.

Originality/value

This study simulated and analyzed the complex transient cavitation flow patterns inside a centrifugal pump and explains the reason for the unsteadiness. This knowledge is instructive in achieving the stable operation of pumps and in trouble shooting rough or cavitating operation.

Details

Engineering Computations, vol. 33 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 28
Per page
102050