Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 7 August 2024

Zhengqiang Ding, Li Xu and Yiping Zhang

The purpose of this paper is to investigate the impact of mechanical vibration on the heat transfer and pressure drop characteristics of semicircular channel printed circuit heat…

64

Abstract

Purpose

The purpose of this paper is to investigate the impact of mechanical vibration on the heat transfer and pressure drop characteristics of semicircular channel printed circuit heat exchangers (PCHEs), while also establishing correlations between vibration parameters and thermal performance.

Design/methodology/approach

By combining experimental and numerical simulation methods, the heat transfer coefficient and pressure drop characteristics of supercritical carbon dioxide (S-CO2) in a semicircular channel with a diameter of 2 mm under vibration conditions were studied. Reinforce the research by conducting computational fluid dynamics studies using ANSYS Fluent 22.0, the experimental results were compared with the numerical simulation results to verify the accuracy of the numerical method.

Findings

The use of vibration has the potential to attenuate the degradation of wall heat transfer caused by buoyancy-induced PCHEs on the upward-facing surface. The heat transfer enhancement (HTE) was maximized by an increase of 18.2%, while the pressure drop enhancement (PDE) was elevated by over 25-fold. The capacity to enhance the heat exchange between S-CO2 and channel walls through increasing vibration intensity is limited, indicating maximum effectiveness in improving thermal performance.

Originality/value

Conducting heat transfer experiments on PCHEs with mechanical vibration enhancement and verifying the accuracy of the vibration numerical model. The relation based on the dimensionless factor is derived. To provide theoretical support for using vibration to enhance the heat transfer capability of PCHEs.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 1 of 1
Per page
102050