Shengtao Lin and Zhengcai Zhao
Complex and exquisite patterns are sculpted on the surface to beautify the parts. Due to the thin-walled nature, the blank of the part is often deformed by the forming and…
Abstract
Purpose
Complex and exquisite patterns are sculpted on the surface to beautify the parts. Due to the thin-walled nature, the blank of the part is often deformed by the forming and clamping processes, disabling the nominal numerical control (NC) sculpting programs. To address this problem, a fast adaptive sculpting method of the complex surface is proposed.
Design/methodology/approach
The geometry of the blank surface is measured using on-machine measurement (OMM). The real blank surface is reconstructed using the non-uniform rational basis spline (NURBS) method. The angle-based flattening (ABF) algorithm is used to flatten the reconstructed blank surface. The dense points are extracted from the pattern on the image using the OpenCV library. Then, the dense points are quickly located on the complex surfaces to generate the tool paths.
Findings
By flattening the reconstructed surface and creating the mapping between the contour points and the planar mesh triangular patches, the tool paths can be regenerated to keep the contour of the pattern on the deformed thin-walled surface.
Originality/value
The proposed method can adjust the tool paths according to the deformation of the thin-walled part. The consistency of sculpting patterns is improved.
Details
Keywords
Chuanxu Wang, Yanbing Li and Zhengcai Wang
This paper aims to develop a bi-objective mixed integer non-linear programing model to optimize the supply chain networks consisting of raw material providers, final product…
Abstract
Purpose
This paper aims to develop a bi-objective mixed integer non-linear programing model to optimize the supply chain networks consisting of raw material providers, final product manufacturers and distribution centers. Raw material substitution caused by varying raw material supply amounts, prices and carbon emissions and final product substitution due to different product prices and carbon emissions are considered.
Design/methodology/approach
The proposed model aims to achieve total profit maximization and total carbon emission minimization. The objective function of carbon emissions is converted into a maximization problem by changing minimum to maximum. The composite objective function is the weighted sum of the bias value of each objective function. The model is then solved using software Lingo12.
Findings
Numerical analysis results show that an increase in the number of alternate raw materials for original raw material helps improve supply chain network performance, and variation in that number causes detectable but not significant changes in downstream final product substitution results.
Originality/value
The major differences between this work and existing research are as follows: first, although previous research considered carbon emissions in supply chain network optimization, it has not considered the substitution effects of products or raw materials. This paper considers the substitution of both raw material and productions. Second, the item substitution considered by previous research is derived from inventory shortage or price difference of original items. However, the substitution considered in the present paper is a response to differences in purchase price, production cost and carbon emissions for items.
Details
Keywords
Leadership politics in China.
The upcoming Chinese Communist Party Congress.