Search results
1 – 2 of 2Guotao Zhang, Zan Zhang, Zhaochang Wang, Yanhong Sun, Baohong Tong and Deyu Tu
The lubricating fluid stored in the porous matrix will spontaneously exude to supplement the lubricating film in the damaged area, thus ensuring the long-term self-lubricating…
Abstract
Purpose
The lubricating fluid stored in the porous matrix will spontaneously exude to supplement the lubricating film in the damaged area, thus ensuring the long-term self-lubricating function of the porous surface. To reveal the repair mechanism of oil film, it is necessary to understand the flow characteristics of oil in micropores. The purpose of this study guides the design of micropore structure to realize the rapid exudation of oil to the porous surface and the rapid repair of the lubricating film.
Design/methodology/approach
In this paper, cylindrical orifice, convergent orifice and divergent orifice were studied. The numerical model of lubricating oil exudation in micropores was established. The distribution characteristics of oil pressure, velocity and three-phase contact line in the process of oil exudation were investigated. The effects of different orifice shapes and orifice structure parameters on the pinning and spreading characteristics of oil droplet were analyzed. Then the internal mechanisms of oil droplet formation and spread on the orifice surface were summarized.
Findings
The results show that during the process of oil exudation, the three-phase contact line of the oil drop is pinned once at the edge of the cylindrical and convergent orifice. Compared with the three orifice structures, the inlet pressure of the oil drop is low, and the oil velocity at the pinning point is stable in the divergent orifice. Resulting in favorable oil exudation. It is easier for oil droplet to depin by appropriately reducing the wall wetting angle, increasing the aperture or controlling the wall inclination angle. Ensure the self-healing and long-lasting lubrication film of porous oil-bearing surfaces.
Practical implications
The effect of pore structure on the flow behavior of lubricating fluid has always been concerned. But the mechanism by which different orifice shape affect the pinning behavior of oil droplets is not yet clear, which is crucial for understanding the self-healing mechanism of oil films on porous surfaces. It is meaningful to analyze the mechanism of oil exudation and spreading on the porous surface of oil in the special orifice, to optimize the design of the orifice structure.
Originality/value
Orifice shape has influence on internal flow field parameters. There is no report on the influence of orifice shape on the film formation process of oil seepage and diffusion from pores. The effects of different orifice shapes and orifice structure parameters on the characteristics of oil droplet pinning and diffusion were studied.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0118/
Details
Keywords
Jin Zhang, Xiaoming Qian and Jing Feng
Under the global climate change, carbon footprint has become a hot issue at home and abroad. However, there is no consensus on the concept, measurement and application of carbon…
Abstract
Purpose
Under the global climate change, carbon footprint has become a hot issue at home and abroad. However, there is no consensus on the concept, measurement and application of carbon footprint.
Design/methodology/approach
In this paper, first, the concept and connotation of carbon footprint are reviewed; then, different methods of carbon footprint measurement are compared, and it is found that “bottom-up” life cycle assessment and “top-down” input–output analysis are applicable to different research scales.
Findings
Finally, the problems in the process of carbon footprint assessment in textile industry are analyzed and further research directions are proposed.
Originality/value
Analyzed and further research directions are proposed.
Details