Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 2 August 2018

Zhanling Ji

High pressure and high speed of the axial piston pump can improve its power density, but they also deteriorate the thermal-fluid-structure coupling effect of the friction pairs…

301

Abstract

Purpose

High pressure and high speed of the axial piston pump can improve its power density, but they also deteriorate the thermal-fluid-structure coupling effect of the friction pairs. This paper aims to reveal the coupling mechanism of the pump, for example, valve plate pair, by carrying out research on multi-physics field coupling.

Design/methodology/approach

Considering the influences of temperature on material properties and thermal fluid on structure, the thermal-fluid elastic mechanics model is established. A complete set of fast and effective thermal-fluid-structure coupling method is presented, by which the numerical analysis is conducted for the valve plate pair.

Findings

According to calculations, it is revealed that the temperature and pressure evolution laws of oil film with time, the pressure distribution law of the fluid, stress and displacement distribution laws of the solid in the valve plate pair. In addition, the forming history of the wedge-shaped oil film and mating clearance change law with rotational speed and outlet pressure in the valve plate pair are presented.

Originality/value

For an axial piston pump operating under high speed, high pressure and wide temperature range, the multi-physics field coupling analysis is an indispensable means and method. This paper provides theoretical evidence for the development of the pump and lays a solid foundation for the research of the same kind of problem.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 1 of 1
Per page
102050