In an urbanising world, neighbouring is perceived to be steadily losing significance and a remnant of the past. The same belief can also be found in China where rapid urbanisation…
Abstract
In an urbanising world, neighbouring is perceived to be steadily losing significance and a remnant of the past. The same belief can also be found in China where rapid urbanisation has had a tremendous impact on the social networks and neighbourhood life of urban residents. This chapter challenges the common perception of neighbouring in demise and argues that neighbouring remains an important form of social relationship, even if the meanings and role of neighbouring have changed. This chapter first charts the changing role of neighbouring from the socialist era to post-reform China. It then provides an account of four common types of neighbourhoods in Chinese cities – work-unit estates, traditional courtyards, commodity housing estates and urban villages – and considers how and why neighbouring in different ways still matters to them. In pre-reform socialist China, neighbourhood life and neighbouring comprised much of the daily social life of residents. Since the reform era, with the proliferation of private commodity housing estates, middle-class residents prioritise comfort, security and privacy, such that neighbouring levels have subsided. Nevertheless, in other neighbourhood types, such as work-unit housing estates, traditional courtyards and urban villages, neighbours still rely upon one another for various reasons.
Details
Keywords
Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang
This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.
Abstract
Purpose
This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.
Design/methodology/approach
Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.
Findings
The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.
Originality/value
The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.
Details
Keywords
Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek
Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…
Abstract
Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.
Details
Keywords
This study examines how informal business networks achieve marketing goals in socially uncertain contexts. Drawing from multiple historical sources, Shangbangs, a type of business…
Abstract
Purpose
This study examines how informal business networks achieve marketing goals in socially uncertain contexts. Drawing from multiple historical sources, Shangbangs, a type of business network that thrived in pre-1949 China, are analyzed.
Design/methodology/approach
The Critical Historical Research Method (CHRM) undergirds a study of Shangbangs’ historicity (i.e. their socio-historically embedded multiplicity, including organizational forms, activities and connotations.
Findings
As informal regional, professional, project-based, special-product-based or mixed marketing networks, Shangbangs relied on “flexible specialization” and coupled multiple business needs to market goods and services, business organizations, specific social values and, when necessary, to debrand business rivals.
Research limitations/implications
This analysis extends theories about marketing networks by probing their subtypes, diverse marketing activities, multipronged channels and relationship building with social entities (including underground societies, business associations and guilds) in response to pre-1949 China’s market uncertainties. Substantiating an alternative approach to “flexible specialization” and marketing innovations within the pre-1949 Chinese economy shows how a parallel theoretical framework can complement western-based marketing theories.
Originality/value
This first comprehensive analysis of Shangbangs, an innovative historical Chinese marketing network outside the conventional market-corporate dichotomy, can inform theory building for marketing strategy-making and management conditioned by social contexts.
Details
Keywords
Wenqing Zhang, Guojun Zhang, Zican Chang, Yabo Zhang, YuDing Wu, YuHui Zhang, JiangJiang Wang, YuHao Huang, RuiMing Zhang and Wendong Zhang
This paper aims to address the challenges in hydroacoustic signal detection, signal distortion and target localization caused by baseline drift. The authors propose a combined…
Abstract
Purpose
This paper aims to address the challenges in hydroacoustic signal detection, signal distortion and target localization caused by baseline drift. The authors propose a combined algorithm that integrates short-time Fourier transform (STFT) detection, smoothness priors approach (SPA), attitude calibration and direction of arrival (DOA) estimation for micro-electro-mechanical system vector hydrophones.
Design/methodology/approach
Initially, STFT method screens target signals with baseline drift in low signal-to-noise ratio environments, facilitating easier subsequent processing. Next, SPA is applied to the screened target signal, effectively removing the baseline drift, and combined with filtering to improve the signal-to-noise ratio. Then, vector channel amplitudes are corrected using attitude correction with 2D compass data. Finally, the absolute target azimuth is estimated using the minimum variance distortion-free response beamformer.
Findings
Simulation and experimental results demonstrate that the SPA outperforms high-pass filtering in removing baseline drift and is comparable to the effectiveness of variational mode decomposition, with significantly shorter processing times, making it more suitable for real-time applications. The detection performance of the STFT method is superior to instantaneous correlation detection and sample entropy methods. The final DOA estimation achieves an accuracy within 2°, enabling precise target azimuth estimation.
Originality/value
To the best of the authors’ knowledge, this study is the first to apply SPA to baseline drift removal in hydroacoustic signals, significantly enhancing the efficiency and accuracy of signal processing. It demonstrates the method’s outstanding performance in the field of underwater signal processing. In addition, it confirms the reliability and feasibility of STFT for signal detection in the presence of baseline drift.
Details
Keywords
Zhaozhao Tang, Wenyan Wu, Po Yang, Jingting Luo, Chen Fu, Jing-Cheng Han, Yang Zhou, Linlin Wang, Yingju Wu and Yuefei Huang
Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However…
Abstract
Purpose
Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However, stability has been one of the key issues which have limited their effective commercial applications. To fully understand this challenge of operation stability, this paper aims to systematically review mechanisms, stability issues and future challenges of SAW sensors for various applications.
Design/methodology/approach
This review paper starts with different types of SAWs, advantages and disadvantages of different types of SAW sensors and then the stability issues of SAW sensors. Subsequently, recent efforts made by researchers for improving working stability of SAW sensors are reviewed. Finally, it discusses the existing challenges and future prospects of SAW sensors in the rapidly growing Internet of Things-enabled application market.
Findings
A large number of scientific articles related to SAW technologies were found, and a number of opportunities for future researchers were identified. Over the past 20 years, SAW-related research has gained a growing interest of researchers. SAW sensors have attracted more and more researchers worldwide over the years, but the research topics of SAW sensor stability only own an extremely poor percentage in the total researc topics of SAWs or SAW sensors.
Originality/value
Although SAW sensors have been attracting researchers worldwide for decades, researchers mainly focused on the new materials and design strategies for SAW sensors to achieve good sensitivity and selectivity, and little work can be found on the stability issues of SAW sensors, which are so important for SAW sensor industries and one of the key factors to be mature products. Therefore, this paper systematically reviewed the SAW sensors from their fundamental mechanisms to stability issues and indicated their future challenges for various applications.
Details
Keywords
Bingjun Li, Shuhua Zhang, Wenyan Li and Yifan Zhang
Grey modeling technique is an important element of grey system theory, and academic articles applied to agricultural science research have been published since 1985, proving the…
Abstract
Purpose
Grey modeling technique is an important element of grey system theory, and academic articles applied to agricultural science research have been published since 1985, proving the broad applicability and effectiveness of the technique from different aspects and providing a new means to solve agricultural science problems. The analysis of the connotation and trend of the application of grey modeling technique in agricultural science research contributes to the enrichment of grey technique and the development of agricultural science in multiple dimensions.
Design/methodology/approach
Based on the relevant literature selected from China National Knowledge Infrastructure, the Web of Science, SpiScholar and other databases in the past 37 years (1985–2021), this paper firstly applied the bibliometric method to quantitatively visualize and systematically analyze the trend of publication, productive author, productive institution, and highly cited literature. Then, the literature is combed by the application of different grey modeling techniques in agricultural science research, and the literature research progress is systematically analyzed.
Findings
The results show that grey model technology has broad prospects in the field of agricultural science research. Agricultural universities and research institutes are the main research forces in the application of grey model technology in agricultural science research, and have certain inheritance. The application of grey model technology in agricultural science research has wide applicability and precise practicability.
Originality/value
By analyzing and summarizing the application trend of grey model technology in agricultural science research, the research hotspot, research frontier and valuable research directions of grey model technology in agricultural science research can be more clearly grasped.
Details
Keywords
Michael O’Regan and Jaeyeon Choe
As its market and society open up, China has transformed itself from a closed agrarian socialist economy to an urban state and an economic force. This has released accumulated…
Abstract
As its market and society open up, China has transformed itself from a closed agrarian socialist economy to an urban state and an economic force. This has released accumulated tourism demand, led to the development of a diversified industry, and the spread of university and vocational courses in this field. However, the industry faces challenges to recruit and retain staff, with tourism education in higher education blamed for the shortfall in numbers and quality of candidates with suitable purpose, knowledge, and passion to serve. This chapter provides a background to the development of and problems facing tourism education in China, and suggests how to support student engagement and hence the future workforce.
Details
Keywords
Tianzuo Wei, Guojun Zhang, YuDing Wu and Wenshu Dai
This paper aims to solve the problems of baseline drift, susceptibility to abnormal data interference during baseline drift processing, and phase inconsistency in underwater…
Abstract
Purpose
This paper aims to solve the problems of baseline drift, susceptibility to abnormal data interference during baseline drift processing, and phase inconsistency in underwater acoustic target detection and signal processing of single microelectromechanical systems (MEMS) vector hydrophone. To this end, this paper proposes a baseline drift removal algorithm based on Huber regression model with B-spline interpolation (H-BS) and a phase compensation algorithm based on the Hilbert transform.
Design/methodology/approach
First, the Huber regression model is innovatively introduced into the conventional B-spline interpolation (B-spline) to solve the control point vectors more accurately and to improve the anti-interference ability of the abnormal data when the B-spline interpolation fitting removes baseline drift and the baseline drift components in the signals are fitted accurately and removed by the above method. Next, the Hilbert transform is applied to the three-channel output signals of the MEMS vector hydrophone to calculate the instantaneous phase and the phase compensation is performed on the vector X/Y signals with the scalar P signal as the reference.
Findings
Through simulation experiments, it is found that H-BS proposed in this paper has smaller processing error and better robustness than variational modal decomposition and B-spline, but the H-BS algorithm takes slightly longer than the B-spline. In the actual lake test experiments, the H-BS algorithm can effectively remove the baseline drift component in the original signal and restore the signal waveform, and after the Hilbert transform phase compensation, the direction of arrival estimation accuracy of the signal is improved by 1°∼2°, which realizes high-precision orientation to the acoustic source target.
Originality/value
In this paper, the Huber regression model is introduced into B-spline interpolation fitting for the first time and applied in the specialized field of hydroacoustic signal baseline drift removal. Meanwhile, the Hilbert transform is applied to phase compensation of hydroacoustic signals. After simulation and practical experiments, these two methods are verified to be effective in processing hydroacoustic signals and perform better than similar methods. This study provides a new research direction for the signal processing of MEMS vector hydrophone, which has important practical engineering application value.