Search results

1 – 1 of 1
Article
Publication date: 12 September 2024

Wanxin Li, Fangfang An, Dawu Shu, Zengshuai Lian, Bo Han and Shaolei Cao

This study aims to elucidate the dyeing kinetics and thermodynamic relationships of CI Reactive Red 24 (RR24) on cotton fabrics, achieve the recycling of inorganic salts and water…

Abstract

Purpose

This study aims to elucidate the dyeing kinetics and thermodynamic relationships of CI Reactive Red 24 (RR24) on cotton fabrics, achieve the recycling of inorganic salts and water resources and obtain comprehensive data on color parameters, fastness and other characteristics of fabrics dyed with the recycled dyeing residual wastewater.

Design/methodology/approach

The dyeing wastewater obtained through advanced oxidation technology was used as a medium for dyeing cotton fabrics with RR24. The absorbance value of the dyeing residue served as an evaluation index, and the relevant kinetic and thermodynamic parameters were calculated based on this absorbance. The color parameters and fastness of the fabric samples were measured to compare the performance of different dyeing media.

Findings

Dyeing cotton with RR24 in both media follows pseudo-second-order kinetics. When dyeing with wastewater media, the dye adsorption in the first 45 min increased by 0.082–1.29 g/kg compared with conventional dyeing. Furthermore, the half-dyeing time was shortened by 4.19–11.99 min and the equilibrium adsorption amount was reduced by 0.277–0.302 g/kg. The adsorption of RR24 on cotton fabrics conformed to the Freundlich model. Fabrics dyed using recycled wastewater exhibit a deeper color, with reduced red light and enhanced blue light, resulting in an overall deeper apparent color.

Originality/value

These dyeing kinetics and thermodynamic properties are beneficial for comprehending and interpreting the dyeing performance and behavior of reactive dyes in dyeing wastewater. They lay a theoretical foundation for the treatment and recycling of dyeing wastewater.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 1 of 1