Zeinab Abdel Hamid, Sayed Abd El Rehim and Moustafa Ibrahim
The purpose of this work was to investigate the effect of Si content of steel substrate on the performance of the hot-dip galvanized layer. Moreover, the structure of the…
Abstract
Purpose
The purpose of this work was to investigate the effect of Si content of steel substrate on the performance of the hot-dip galvanized layer. Moreover, the structure of the galvanized layers and the corrosion performance of the galvanized steel in 3.5 per cent NaCl solution have been studied.
Design/methodology/approach
The galvanized layer has been formed by the hot-dip technique, and the influence of silicon content in the steel composition on the corrosion performance of the galvanized steel was estimated. The surface morphologies and chemical compositions of the coated layers were assessed using scanning electron microscopy and energy-dispersive X-ray analysis, respectively. Potentiodynamic polarization Tafel lines and electrochemical impedance spectroscopy (EIS) tests were used to evaluate the corrosion resistance of the galvanized steel in 3.5 per cent NaCl solution.
Findings
The results proved that adhere, compact and continuous coatings were formed with steel containing 0.56 Wt.% Si, while cracks and overly thick coatings were obtained with steel containing 1.46 Wt.% Si. Tafel plots illustrated that the corrosion rate of galvanized steel containing 0.08 and 0.56 Wt.% Si was lower than that of the galvanized steel containing 1.46 Wt.% Si. Also, the results of the EIS reveal that the impedance of the galvanized steel containing 0.08 and 0.56 Wt.% Si was the highest and the lowest, respectively, with the steel containing 1.46 Wt.% Si.
Social implications
Generally, in industry steels containing high amounts of silicon (0.15-0.25 Wt.%) can be galvanized satisfactory either by controlling the temperature (440°C) or adding Ni to the galvanized bath. The low temperature reduces the coating thickness; nickel amount must be controlled to prevent the formation of higher amounts of dross. This study proved that high Si steel of up to 0.56 Wt.% can be galvanized at 460°C without adding Ni to the galvanized bath and form adhere, compact, free cracks and have good corrosion resistance. Consequently, a social benefit can be associated with galvanizing high Si steel, leading to an increase in the cost of the process.
Originality/value
The results presented in this work are an insight into understanding the hot-dip galvanizing of high Si steel. The corrosion resistance of galvanized steel containing 0.56 Wt.% Si alloys has been considered as a promising behavior. In this work, a consistent assessment of the results was achieved on the laboratory scale.
Details
Keywords
Zeinab Abdel Hamid, H.B. Hassan and Mohamed Sultan
The improvement of the hydrogen evolution reaction (HER) performance requires more efficient and inexpensive electrocatalysts. The purpose of this study is to prepare Ni-W and…
Abstract
Purpose
The improvement of the hydrogen evolution reaction (HER) performance requires more efficient and inexpensive electrocatalysts. The purpose of this study is to prepare Ni-W and Ni-W-P thin films using the electrodeposition technique using a pulse current and investigate their behaviors toward HER in an acidic solution.
Design/methodology/approach
The aim is to prepare Ni-W and Ni-W-P films by the electrodeposition technique using a pulse current and estimate their performance for the HER. The surface morphologies and chemical compositions of the deposited films were assessed using scanning electron microscopy, energy-dispersive X-ray analysis and X-ray diffraction. Linear sweep voltammetry, chronoamperometry, Tafel plots and electrochemical impedance spectroscopy were used to evaluate the prepared electrodes toward the hydrogen evolution process.
Findings
The main conclusion is that the surface morphology of Ni–W deposited film is a crystalline structure, while that of Ni-W-P deposit is an amorphous structure. HER activity on Ni-W electrodes increases with decreasing the Wt.% of W to 7.83 Wt.% in the prepared electrodes. In addition, the presence of P enhances HER activity, which increases with increasing the Wt.% of P in the prepared Ni-W-P electrodes. Both Ni-W (7.83 Wt.% W) and Ni-W-P (20.34 Wt.% P), which have been prepared at 8 A dm−2 display the best performance toward HER compared to the other prepared electrodes. They exhibit high catalytic activities toward HER, which is evidenced by high hydrogen evolution current density values of 9.52 and 33.98 mA cm−2, low onset potentials of −0.73 and −0.63 V, low Tafel slopes of −125 mV/dec, high exchange current densities of 0.058 and 0.20 mA cm−2, low charge transfer resistances (Rct) of 226.28 and 75.8 ohm·cm2 for Ni-W (7.83 Wt.% W) and Ni-W-P (20.34 Wt.% P), respectively; moreover, they exhibited considerable stabilities too.
Originality/value
The results presented in this work are an insight into understanding the performance of the prepared Cu electrodes coated by Ni-W and Ni-W-P films toward HER. In this work, a consistent assessment of the results achieved on laboratory scale has been conducted.