Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 26 September 2024

Amgoth Rajender, Amiya K. Samanta and Animesh Paral

Accurate predictions of the steady-state corrosion phase and service life to achieve specific safety limits are crucial for assessing the service of reinforced concrete (RC…

68

Abstract

Purpose

Accurate predictions of the steady-state corrosion phase and service life to achieve specific safety limits are crucial for assessing the service of reinforced concrete (RC) structures. Forecasting the service life (SL) of structures is imperative for devising maintenance and repair strategy plans. The optimization of maintenance strategies serves to prolong asset life, mitigate asset failures, minimize repair costs and enhance health and safety standards for society.

Design/methodology/approach

The well-known empirical conventional (traditional) approaches and machine learning (ML)-based SL prediction models were presented and compared. A comprehensive parametric study was conducted on existing models, considering real-world conditions as reported in the literature. The analysis of traditional and ML models underscored their respective limitations.

Findings

Empirical models have been developed by considering simplified assumptions and relying on factors such as corrosion rate, steel reinforcement diameter and concrete cover depth, utilizing fundamental mathematical formulas. The growth of ML in the structural domain has been identified and highlighted. The ML can capture complex relationships between input and output variables. The performance of ML in corrosion and service life evaluation has been satisfactory. The limitations of ML techniques are discussed, and its open challenges are identified, along with insights into the future direction to develop more accurate and reliable models.

Practical implications

To enhance the traditional modeling of service life, key areas for future research have been highlighted. These include addressing the heterogeneous properties of concrete, the permeability of concrete and incorporating the interaction between temperature and bond-slip effect, which has been overlooked in existing models. Though the performance of the ML model in service life assessment is satisfactory, models overlooked some parameters, such as the material characterization and chemical composition of individual parameters, which play a significant role. As a recommendation, further research should take these factors into account as input parameters and strive to develop models with superior predictive capabilities.

Originality/value

Recent deployment has revealed that ML algorithms can grasp complex relationships among key factors impacting deterioration and offer precise evaluations of remaining SL without relying on traditional models. Incorporation of more comprehensive and diverse data sources toward potential future directions in the RC structural domain can provide valuable insights to decision-makers, guiding their efforts toward the creation of even more resilient, reliable, cost-efficient and eco-friendly RC structures.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Access Restricted. View access options
Article
Publication date: 1 February 1988

Gilles Pijaudier‐Cabot, Zdeněk P. Bažant and Mazen Tabbara

This paper presents a comparison of various models for strain‐softening due to damage such as cracking or void growth, as proposed recently in the literature. Continuum‐based…

321

Abstract

This paper presents a comparison of various models for strain‐softening due to damage such as cracking or void growth, as proposed recently in the literature. Continuum‐based models expressed in terms of softening stress—strain relations, and fracture‐type models expressed in terms of softening stress—displacement relations are distinguished. From one‐dimensional wave propagation calculations, it is shown that strain‐localization into regions of finite size cannot be achieved. The previously well‐documented spurious convergence is obtained with continuum models, while stress—displacement relations cannot model well smeared‐crack situations. Continuum models may, however, be used in general if a localization limiter is implemented. Gradient‐type localization limiters appear to be rather complicated; they require solving higher‐order differential equations of equilibrium with additional bourdary conditions. Non‐local localization limiters, especially the non‐local continuum with local strain, in which only the energy dissipating variables are non‐local, is found to be very effective, and also seems to be physically realistic. This formulation can correctly model the transition between homogeneous damage states and situations in which damage localizes into small regions that can be viewed as cracks. The size effect observed in the experimental and numerical response of specimens in tension or compression is shown to be a consequence of this progressive transition from continuum‐type to fracture‐type formulations.

Details

Engineering Computations, vol. 5 no. 2
Type: Research Article
ISSN: 0264-4401

Access Restricted. View access options
Article
Publication date: 15 July 2021

Vishal M. and Satyanarayanan K.S.

This paper delineates a literature review on fire-induced progressive collapse on structures and the effect of high temperature on structures and elements. After the occurrences…

397

Abstract

Purpose

This paper delineates a literature review on fire-induced progressive collapse on structures and the effect of high temperature on structures and elements. After the occurrences of fire in the World Trade Center in the USA, the researchers started concentrating on the progressive collapse that happens due to high temperature. Currently, most of the researchers are working on fire-induced progressive collapse on structures using high-temperature behavior on materials which are used for construction. The researchers have been doing an intensive study to find a better strategy to prevent the building from structural fire damage or collapse with available codes and guidelines throughout the world. This paper aims to provide a better understanding and analytical solutions on the basis of the recent works done by researchers in fire-induced progressive collapse and methods adopted to find the collapse mechanism.

Design/methodology/approach

This paper is written by studying different literature papers of 109 related to progressive collapse on structures and fire-induced progressive collapse.

Findings

The behavior of structures due to high temperature and collapse conditions due to fire in different scenarios is identified.

Originality/value

This paper fulfills an identified need to study how the structure can withstand high-temperature conditions in our day-to-day lives.

Details

Journal of Structural Fire Engineering, vol. 12 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 3 of 3
Per page
102050