Wujiu Pan, Heng Ma, Jian Li, Qilong Wu, Junyi Wang, Jianwen Bao, Lele Sun and Peng Gao
Aero-engine casings commonly use composite cylindrical shell structures with excellent properties such as corrosion resistance and fatigue resistance. Still, their vibration…
Abstract
Purpose
Aero-engine casings commonly use composite cylindrical shell structures with excellent properties such as corrosion resistance and fatigue resistance. Still, their vibration behavior is relatively complex and may cause fatigue vibration damage, so it is essential to analyze the vibration characteristics of composite cylindrical shells. The purpose of this paper is to analyze the vibration characteristics of multilayer composite cylindrical shells subjected to external pressures and having different interlayer thickness ratios and provide some theoretical basis for the fatigue damage prediction of cylindrical shell casing to ensure the safety and stability of the engine during flight.
Design/methodology/approach
Firstly, the vibration differential equation with external pressure is established based on Soedel theory considering nonlinear effects, while four symmetric boundary conditions are chosen to constrain the cylindrical shell. Then the Rayleigh–Ritz method, which is more efficient and accurate in calculating large structural systems, is applied to solve the problem, and the theoretical model of three-layer cylindrical shell under external pressure is established. The accuracy of the model is verified by comparing the data with the specialized literature. Subsequently, the effects of different external pressures and different thickness-to-diameter ratios, different length-to-diameter ratios and different interlayer thickness percentages on the natural frequency of multilayer composite cylindrical shells were investigated by control variable analysis.
Findings
The conclusions obtained show that the external pressure increases the natural frequency of the cylindrical shell and that the frequency characteristics of the cylindrical shell vary for different boundary conditions. The effect of length-to-diameter ratio, thickness-to-diameter ratio and the percentage of the thickness of the intermediate layer on the natural frequency of the cylindrical shell are significantly increased under external pressure. Because the presence of external pressure increases the frequency of the cylindrical shell by about 70%, it has almost no effect on the frequency at the minimum number of circumferential waves, and the effect on the frequency at the maximum number of circumferential waves is reduced to about 50%. The frequencies in the SL-SL boundary condition are all in perfect agreement with the S-S boundary condition under the influence of different influencing factors.
Originality/value
In this paper, the effect of external pressure and the natural properties of the cylindrical shell under external pressure on the cylindrical shell’s frequency is considered, emphasizing the effect of different layer thickness ratios on the frequency. This paper aims to summarize the changing law between the natural frequency of the cylindrical shell itself and different design parameters during the flight pressure process. Reliable theoretical predictions are provided for analyzing the vibrational behavior of shells subjected to external pressures in aerospace, as well as a database for the practical production of cylindrical shells.
Details
Keywords
Bingjun Li, Shuhua Zhang, Wenyan Li and Yifan Zhang
Grey modeling technique is an important element of grey system theory, and academic articles applied to agricultural science research have been published since 1985, proving the…
Abstract
Purpose
Grey modeling technique is an important element of grey system theory, and academic articles applied to agricultural science research have been published since 1985, proving the broad applicability and effectiveness of the technique from different aspects and providing a new means to solve agricultural science problems. The analysis of the connotation and trend of the application of grey modeling technique in agricultural science research contributes to the enrichment of grey technique and the development of agricultural science in multiple dimensions.
Design/methodology/approach
Based on the relevant literature selected from China National Knowledge Infrastructure, the Web of Science, SpiScholar and other databases in the past 37 years (1985–2021), this paper firstly applied the bibliometric method to quantitatively visualize and systematically analyze the trend of publication, productive author, productive institution, and highly cited literature. Then, the literature is combed by the application of different grey modeling techniques in agricultural science research, and the literature research progress is systematically analyzed.
Findings
The results show that grey model technology has broad prospects in the field of agricultural science research. Agricultural universities and research institutes are the main research forces in the application of grey model technology in agricultural science research, and have certain inheritance. The application of grey model technology in agricultural science research has wide applicability and precise practicability.
Originality/value
By analyzing and summarizing the application trend of grey model technology in agricultural science research, the research hotspot, research frontier and valuable research directions of grey model technology in agricultural science research can be more clearly grasped.
Details
Keywords
Jiacai Wang, Jiaoliao Chen, Libin Zhang, Fang Xu and Lewei Zhi
The sensorless external force estimation of robot manipulator can be helpful for reducing the cost and complexity of the robot system. However, the complex friction phenomenon of…
Abstract
Purpose
The sensorless external force estimation of robot manipulator can be helpful for reducing the cost and complexity of the robot system. However, the complex friction phenomenon of the robot joint and uncertainty of robot model and signal noise significantly decrease the estimation accuracy. This study aims to investigate the friction modeling and the noise rejection of the external force estimation.
Design/methodology/approach
A LuGre-linear-hybrid (LuGre-L) friction model that combines the dynamic friction characteristics of the robot joint and static friction of the drive motor is proposed to improve the modeling accuracy of robot friction. The square root cubature Kalman filter (SCKF) is improved by integrating a Sage Window outer layer and a nonlinear disturbance observer (NDOB) inner layer. In the outer layer, Sage Window is integrated in the square root Kalman filter (W-SCKF) to dynamically adjust noise statistics. NDOB is applied as the inner layer of W-SCKF (NDOB-WSCKF) to obtain the uncertain state variables of the state model.
Findings
A peg-in-hole contact experiment conducted on a real robot demonstrates that the average accuracy of the estimated joint torque based on LuGre-L is improved by 4.9% in contrast to the LuGre model. Based on the proposed NDOB-WSCKF, the average estimation accuracy of the external joint torque can reach up to 92.1%, which is improved by 4%–15.3% in contrast to other estimation methods (SCKF and NDOB).
Originality/value
A LuGre-L friction model is proposed to handle the coupling of static and dynamic friction characteristics for the robot manipulator. An improved SCKF is applied to estimate the external force of the robot manipulator. To improve the noise rejection ability of the estimation method and make it more resistant to unmodeled state variable, SCKF is improved by integrating a Sage Window and NDOB, and a NDOB-WSCKF external force estimator is developed. Validation results demonstrate that the accuracy of the robot dynamics model and the estimated external force is improved by the proposed method.
Details
Keywords
Syed Ali Raza, Komal Akram Khan and Bushra Qamar
The research analyzes the influence of three environmental triggers, i.e. awareness, concern and knowledge on environmental attachment and green motivation that affect tourists'…
Abstract
Purpose
The research analyzes the influence of three environmental triggers, i.e. awareness, concern and knowledge on environmental attachment and green motivation that affect tourists' pro-environmental behavior in the Pakistan’s tourism industry. Furthermore, this study has analyzed the moderating role of moral obligation concerning environmental attachment and green motivation on tourists' pro-environmental behavior.
Design/methodology/approach
Data were gathered via a structured questionnaire by 237 local (domestic) tourists of Pakistan. Furthermore, the data were examined by employing SmartPLS.
Findings
Findings demonstrate that all three environmental triggers have a positive and significant relationship with environmental attachment and green motivation. Accordingly, environmental attachment and green motivation promote tourists' pro-environmental behavior. Furthermore, the moderating role of moral obligations has also been incorporated in the study. The finding reveals a strong and positive relationship among environmental attachment and tourists' pro-environmental behaviors during high moral obligations. In contrast, moral obligations do not moderate association between green motivation and tourists' pro-environmental behavior. Therefore, competent authorities should facilitate tourists to adopt environmentally friendly practices; which will ultimately promote pro-environmental behavior.
Originality/value
This study provides useful insights regarding the role of tourism in fostering environmental attachment and green motivation that sequentially influence tourist pro-environmental behavior. Secondly, this research has employed moral obligations as a moderator to identify the changes in tourists’ pro-environmental behavior based on individuals' ethical considerations. Hence, the study provides an in-depth insight into tourists' behavior. Lastly, the present research offers effective strategies for the tourism sector and other competent authorities to increase green activities that can embed the importance of the environment among individuals.
Details
Keywords
Mingyang Liu, Huifen Zhu, Guangjun Gao, Chen Jiang and G.R Liu
The purpose of this paper is to investigate a novel stabilization scheme to handle convection and pressure oscillation in the process of solving incompressible laminar flows by…
Abstract
Purpose
The purpose of this paper is to investigate a novel stabilization scheme to handle convection and pressure oscillation in the process of solving incompressible laminar flows by finite element method (FEM).
Design/methodology/approach
The semi-implicit stabilization scheme, characteristic-based polynomial pressure projection (CBP3) consists of the Characteristic-Galerkin method and polynomial pressure projection. Theoretically, the proposed scheme works for any type of element using equal-order approximation for velocity and pressure. In this work, linear 3-node triangular and 4-node tetrahedral elements are the focus, which are the simplest but most difficult elements for pressure stabilizations.
Findings
The present paper proposes a new scheme, which can stabilize FEM solution for flows of both low and relatively high Reynolds numbers. And the influence of stabilization parameters of the CBP3 scheme has also been investigated.
Research limitations/implications
The research in this work is limited to the laminar incompressible flow.
Practical implications
The verification and validation of the CBP3 scheme are conducted by several 2 D and 3 D numerical examples. The scheme could be used to deal with more practical fluid problems.
Social implications
The application of scheme to study complex hemodynamics of patient-specific abdominal aortic aneurysm is also presented, which demonstrates its potential to solve bio-flows.
Originality/value
The paper simulated 2 D and 3 D numerical examples with superior results compared to existing results and experiments. The novel CBP3 scheme is verified to be very effective in handling convection and pressure oscillation.
Details
Keywords
M.Y. Zhang, L.Z. Liu, L. Weng, W.W. Cui and K.S. Hui
– The aim of this study was to fabricate polyimide (PI)/Al2O3 composite films via surface modification and ion exchange techniques, and examine their properties.
Abstract
Purpose
The aim of this study was to fabricate polyimide (PI)/Al2O3 composite films via surface modification and ion exchange techniques, and examine their properties.
Design/methodology/approach
The method involves hydrolyzing the PI film double surface layers in an aqueous potassium hydroxide (KOH) solution and incorporating aluminium ions (Al3+) into the hydrolyzed layers of the PI film via subsequent ion exchange, followed by a treatment of the Al3+-loaded PI films with an aqueous ammonia solution, which leads to the formation of Al(OH)3 in the surface-modified layers. After a final thermal annealing treatment in ambient air, the Al(OH)3 decomposes to Al2O3, and forms composite layers on both surfaces of the re-imidized PI film.
Findings
The PI/Al2O3 composite film obtained with a 6 hours of KOH treatment exhibited excellent thermal stability, good mechanical properties and better electric breakdown strength and corona-resistance properties than the pristine PI film.
Practical implications
The method for obtaining the composite films in this paper is worth consideration, but additional research will be needed. Furthermore, this method is of general importance for the fabrication of composite PI films with tailored properties.
Originality/value
This study showed that surface modification and ion-exchange techniques are powerful methodologies for the fabrication of PI/Al2O3 composite films.
Details
Keywords
Philip Desenfans, Zifeng Gong, Dries Vanoost, Konstantinos Gryllias, Jeroen Boydens, Herbert De Gersem and Davy Pissoort
When rotor and stator teeth are close, the connecting air gap flux tube's cross-sectional area exceeds the tooth overlap area. This flux fringing effect is disregarded in the air…
Abstract
Purpose
When rotor and stator teeth are close, the connecting air gap flux tube's cross-sectional area exceeds the tooth overlap area. This flux fringing effect is disregarded in the air gap permeance calculation of single-slice magnetic equivalent circuits (MECs) of electric motors with skewed rotors. This paper aims to extend an air gap permeance calculation method incorporating flux fringing for unskewed rotors to skewed and radially eccentric rotors.
Design/methodology/approach
Assuming axial independence, the unskewed air gap permeance is rotated according to the skew and integrated along the axial dimension, resulting in a first method. The integral is approximated analytically, resulting in a second method. Results are compared to a commonly used reference method and validated using a non-linear finite element method (FEM) simulation.
Findings
The proposed methods provide better alignment with the FEM validation compared to the reference method for skewed rotors and common rotor eccentricity, i.e. below 50% of the air gap length. The analytical method is shown to be competitive with the reference method regarding computational time cost.
Originality/value
Two novel air gap permeance methods are proposed for single-slice MECs with skewed rotors. Their characteristics are discussed and validated.
Details
Keywords
Z.Q. Han, R.W. Lewis and B.C. Liu
The motivation for this work is to establish a model that not only includes the main factors resulting in macrosegregation but also retains simplicity and consistency for the sake…
Abstract
Purpose
The motivation for this work is to establish a model that not only includes the main factors resulting in macrosegregation but also retains simplicity and consistency for the sake of potential application in casting practice.
Design/methodology/approach
A mathematical model for the numerical simulation of thermosolutal convection and macrosegregation in the solidification of multicomponent alloys is developed, in which the coupled macroscopic mass, momentum, energy and species conservation equations are solved. The conservation equations are discretized by using the control volume‐based finite difference method, in which an up‐wind scheme is adopted to deal with the convection term. The alternative direction implicit procedure and a line‐by‐line solver, based on the tri‐diagonal matrix algorithm, are employed to iteratively solve the algebraic equations. The velocity‐pressure coupling is handled by using the SIMPLE algorithm.
Findings
Based on the present study, the liquid flow near the dendritic front is believed to play an important role in large‐scale transport of the solute species. The numerical or experimental results in the literatures on the formation of channel segregation, especially those about the location of the initial flow as well as the morphology of the liquidus front, are well supported by the present investigation.
Research limitations/implications
The modelling is limited to dealing with the thermosolutal convection of two‐dimensional cases. More complicated phenomena (e.g. crystal movement) and 3D geometry should be considered in future research.
Practical implications
The present model can be used to analyze the effects of process parameters on macrosegregation and, with further development, could be applied as a useful tool in casting practice.
Originality/value
The numerical simulation demonstrates the capability of the model to simulate the thermosolutal convection and macrosegregation in alloy solidification. It also shows that the present model has good application potential in the prediction and control of channel segregation.
Details
Keywords
Mingyang Liu, Guangjun Gao, Huifen Zhu and Chen Jiang
The purpose of this paper is to investigate the feasibility of solving turbulent flows based on smoothed finite element method (S-FEM). Then, the differences between S-FEM and…
Abstract
Purpose
The purpose of this paper is to investigate the feasibility of solving turbulent flows based on smoothed finite element method (S-FEM). Then, the differences between S-FEM and finite element method (FEM) in dealing with turbulent flows are compared.
Design/methodology/approach
The stabilization scheme, the streamline-upwind/Petrov-Galerkin stabilization is coupled with stabilized pressure gradient projection in the fractional step framework. The Reynolds-averaged Navier-Stokes equations with standard k-epsilon model are selected to solve turbulent flows based on S-FEM and FEM. Standard wall functions are applied to predict boundary layer profiles.
Findings
This paper explores a completely new application of S-FEM on turbulent flows. The adopted stabilization scheme presents a good performance on stabilizing the flows, especially for very high Reynolds numbers flows. An advantage of S-FEM is found in applying wall functions comparing with FEM. The differences between S-FEM and FEM have been investigated.
Research limitations/implications
The research in this work is limited to the two-dimensional incompressible turbulent flow.
Practical implications
The verification and validation of a new combination are conducted by several numerical examples. The new combination could be used to deal with more complicated turbulent flows.
Social implications
The applications of the new combination to study basic and complex turbulent flow are also presented, which demonstrates its potential to solve more turbulent flows in nature and engineering.
Originality/value
This work carries out a great extension of S-FEM in simulations of fluid dynamics. The new combination is verified to be very effective in handling turbulent flows. The performances of S-FEM and FEM on turbulent flows were analyzed by several numerical examples. Superior results were found compared with existing results and experiments. Meanwhile, S-FEM has an advantage of accuracy in predicting boundary layer profile.
Details
Keywords
Zhenlin Wang, Zhansheng Liu and Guanghui Zhang
The purpose of this paper is to present a numerical model to investigate the dynamic behavior and force coefficients of a compact squeeze film damper with dual film clearances…
Abstract
Purpose
The purpose of this paper is to present a numerical model to investigate the dynamic behavior and force coefficients of a compact squeeze film damper with dual film clearances adjusted by an elastic ring, known as elastic ring squeeze film damper (ERSFD).
Design/methodology/approach
The governing equations of ERSFD as well as the boundary conditions are obtained based on Reynolds equation. A simplified Greenwood–Williamson model is implemented to investigate the contact behavior between the elastic ring and the journal. The interactions between the films and the elastic ring are achieved by block iterative method.
Findings
The radial deformation as well as velocity of the elastic ring are captured to illustrate the pressure profiles of the inner and outer films. High-order frequency components related to the number of the boss N are observed on the frequency spectrum of the film force. The force coefficients of the ERSFD are constant for a wider range of non-dimensional whirling radius ε compared with conventional squeeze film damper.
Originality/value
The force coefficients of the ERSFD are obtained by assuming that the journal center moves in a circular centered orbit. High-order frequency components related to the number of bosses N are observed. These findings may provide helpful materials for the application of the ERSFD.