Search results

1 – 10 of over 17000
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 26 September 2019

Di Yang and Zhiming Gao

A finite volume scheme for diffusion equations on non-rectangular meshes is proposed in [Deyuan Li, Hongshou Shui, Minjun Tang, J. Numer. Meth. Comput. Appl., 1(4)(1980)217–224…

92

Abstract

Purpose

A finite volume scheme for diffusion equations on non-rectangular meshes is proposed in [Deyuan Li, Hongshou Shui, Minjun Tang, J. Numer. Meth. Comput. Appl., 1(4)(1980)217–224 (in Chinese)], which is the so-called nine point scheme on structured quadrilateral meshes. The scheme has both cell-centered unknowns and vertex unknowns which are usually expressed as a linear weighted interpolation of the cell-centered unknowns. The critical factor to obtain the optimal accuracy for the scheme is the reconstruction of vertex unknowns. However, when the mesh deformation is severe or the diffusion tensor is discontinuous, the accuracy of the scheme is not satisfactory, and the author hope to improve this scheme.

Design/methodology/approach

The authors propose an explicit weighted vertex interpolation algorithm which allows arbitrary diffusion tensors and does not depend on the location of discontinuity. Both the derivation of the scheme and that of vertex reconstruction algorithm satisfy the linearity preserving criterion which requires that a discretization scheme should be exact on linear solutions. The vertex interpolation algorithm can be easily extended to 3 D case.

Findings

Numerical results show that it maintain optimal convergence rates for the solution and flux on 2 D and 3 D meshes in case that the diffusion tensor is taken to be anisotropic, at times heterogeneous, and/or discontinuous.

Originality/value

This paper proposes a linearity preserving and explicit weighted vertex interpolation algorithm for cell-centered finite volume approximations of diffusion equations on general grids. The proposed finite volume scheme with the new interpolation algorithm allows arbitrary continuous or discontinuous diffusion tensors; the final scheme is applicable to arbitrary polygonal grids, which may have concave cells or degenerate ones with hanging nodes. The final scheme has second-order convergence rate for the approximate solution and higher than first-order accuracy for the flux on 2 D and 3 D meshes. The explicit weighted interpolation algorithm is easy to implement in three dimensions in case that the diffusion tensor is continuous or discontinuous.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 11 January 2021

Mingyang Li, Zhijiang Du, Xiaoxing Ma, Wei Dong, Yongzhi Wang, Yongzhuo Gao and Wei Chen

This paper aims to propose a robotic automation system for processing special-shaped thin-walled workpieces, which includes a measurement part and a processing part.

216

Abstract

Purpose

This paper aims to propose a robotic automation system for processing special-shaped thin-walled workpieces, which includes a measurement part and a processing part.

Design/methodology/approach

In the measurement part, to efficiently and accurately realize the three-dimensional camera hand-eye calibration based on a large amount of measurement data, this paper improves the traditional probabilistic method. To solve the problem of time-consuming in the extraction of point cloud features, this paper proposes a point cloud feature extraction method based on seed points. In the processing part, the authors design a new type of chamfering tool. During the process, the robot adopts admittance control to perform compensation according to the feedback of four sensors mounted on the tool.

Findings

Experiments show that the proposed system can make the tool smoothly fit the chamfered edge during processing and the machined chamfer meets the processing requirements of 0.5 × 0.5 to 0.9 × 0.9 mm2.

Practical implications

The proposed design and approach can be applied on many types of special-shaped thin-walled parts. This will give a new solution for the automation integration problem in aerospace manufacturing.

Originality/value

A novel robotic automation system for processing special-shaped thin-walled workpieces is proposed and a new type of chamfering tool is designed. Furthermore, a more accurate probabilistic hand-eye calibration method and a more efficient point cloud extraction method are proposed, which are suitable for this system when comparing with the traditional methods.

Details

Assembly Automation, vol. 41 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Access Restricted. View access options
Article
Publication date: 16 June 2022

Honggang Gao

The purpose of this paper is to study the control strategy of transition mode of the stopped-rotor (SR) aircraft under the condition of redundant control and complex aerodynamic…

80

Abstract

Purpose

The purpose of this paper is to study the control strategy of transition mode of the stopped-rotor (SR) aircraft under the condition of redundant control and complex aerodynamic characteristics.

Design/methodology/approach

This paper first proposes a transition strategy for the conversion between helicopter mode and fixed-wing mode. Then, aiming at the redundancy of the two control systems in the transition process, a control model is proposed, which greatly simplifies the control in conversion mode. Then, to facilitate the design of the control system, the Takagi-Sugeno model of the SR aircraft in transition mode is established. Finally, an explicit model tracking and tuning parameter stability augmentation control system is designed, so that the SR aircraft has a good stability during the transition process. Then, the outer loop control system of transition flight is designed.

Findings

The simulation results show that the control strategy proposed in this paper can realize the mode conversion well. It lays a solid foundation for the subsequent engineering flight test for the SR aircraft.

Originality/value

The work done in this paper provides ideas and methods for the flight control system design of SR aircraft in transition mode. The method of designing control model to solve the coordination of redundant control system is also applicable for other multimode aircraft, which provides a simple and convenient method for the multimode aircraft control.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Access Restricted. View access options
Article
Publication date: 16 October 2017

He Xu, Yan Xu, Peiyuan Wang, Hongpeng Yu, Ozoemena Anthony Ani and X.Z. Gao

The purpose of this paper is to explore a novel measurement approach for wheel-terrain contact angle using laser scanning sensors based on near-terrain perception. Laser scanning…

203

Abstract

Purpose

The purpose of this paper is to explore a novel measurement approach for wheel-terrain contact angle using laser scanning sensors based on near-terrain perception. Laser scanning sensors have rarely been applied to the measurement of wheel-terrain contact angle for wheeled mobile robots (WMRs) in previous studies; however, it is an effective way to measure wheel-terrain contact angle directly with the advantages of simple, fast and high accuracy.

Design/methodology/approach

First, kinematics model for a WMR moving on rough terrain was developed, taking into consideration wheel slip and wheel-terrain contact angle. Second, the measurement principles of wheel-terrain contact angle using laser scanning sensors was presented, including “rigid wheel - rigid terrain” model and “rigid wheel - deformable terrain” model.

Findings

In the proposed approach, the measurement of wheel-terrain contact angle using laser scanning sensors was successfully demonstrated. The rationality of the approach was verified by experiments on rigid and sandy terrains with satisfactory results.

Originality/value

This paper proposes a novel, fast and effective wheel-terrain contact angle measurement approach for WMRs moving on both rigid and deformable terrains, using laser scanning sensors.

Details

Industrial Robot: An International Journal, vol. 44 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Access Restricted. View access options
Article
Publication date: 10 June 2024

Xinghong Wang, Qiang Bian, Xinhua Gao, Chunjiang Zhao, Minghui Liu, Xinghui Xie and Bowen Jiao

The purpose of this paper is to establish a dynamic model considering the actual operating conditions of the train and to study the dynamic performance and vibration…

54

Abstract

Purpose

The purpose of this paper is to establish a dynamic model considering the actual operating conditions of the train and to study the dynamic performance and vibration characteristics of axle box bearings under different operating conditions.

Design/methodology/approach

In this paper, based on the internal contact characteristics of double-row tapered roller bearings, a dynamic model considering the actual operating conditions of the train is established. The correctness of the model is verified by the vibration test of the bearing. Comparative analysis was conducted on the effects of axial force, radial force and rotational speed on the angular velocity of the cage, slip rate and vibration acceleration level of the inner ring.

Findings

As the force increases, the slip rate of the cages on both sides decreases, and the vibration acceleration level of the inner ring increases. With the increase of rotational speed, the cage slip rate of the axle box bearing increases and the vibration acceleration level of the inner ring increases.

Originality/value

A dynamic model is established considering the actual operating conditions, and the dynamic performance and vibration characteristics of the axle box bearing under different operating conditions are analyzed by numerical method. The research content can provide reference for the parameter design of high-speed railway bearings.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0085/

Details

Industrial Lubrication and Tribology, vol. 76 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 21 March 2019

Huan Zhao and Zhenghong Gao

The high probability of the occurrence of separation bubbles or shocks and early transition to turbulence on surfaces of airfoil makes it very difficult to design high-lift and…

207

Abstract

Purpose

The high probability of the occurrence of separation bubbles or shocks and early transition to turbulence on surfaces of airfoil makes it very difficult to design high-lift and high-speed Natural-Laminar-Flow (NLF) airfoil for high-altitude long-endurance unmanned air vehicles. To resolve this issue, a framework of uncertainty-based design optimization (UBDO) is developed based on an adjusted polynomial chaos expansion (PCE) method.

Design/methodology/approach

The γ ̄Re-θt transition model combined with the shear stress transport k-ω turbulence model is used to predict the laminar-turbulent transition. The particle swarm optimization algorithm and PCE are integrated to search for the optimal NLF airfoil. Using proposed UBDO framework, the aforementioned problem has been regularized to achieve the optimal airfoil with a tradeoff of aerodynamic performances under fully turbulent and free transition conditions. The tradeoff is to make sure its good performance when early transition to turbulence on surfaces of NLF airfoil happens.

Findings

The results indicate that UBDO of NLF airfoil considering Mach number and lift coefficient uncertainty under free transition condition shows a significant deterioration when complicated flight conditions lead to early transition to turbulence. Meanwhile, UBDO of NLF airfoil with a tradeoff of performances under both fully turbulent and free transition conditions holds robust and reliable aerodynamic performance under complicated flight conditions.

Originality/value

In this work, the authors build an effective uncertainty-based design framework based on an adjusted PCE method and apply the framework to design two high-performance NLF airfoils. One of the two NLF airfoils considers Mach number and lift coefficient uncertainty under free transition condition, and the other considers uncertainties both under fully turbulent and free transition conditions. The results show that robust design of NLF airfoil should simultaneously consider Mach number, lift coefficient (angle of attack) and transition location uncertainty.

Access Restricted. View access options
Book part
Publication date: 4 December 2020

Abstract

Details

Application of Big Data and Business Analytics
Type: Book
ISBN: 978-1-80043-884-2

Access Restricted. View access options
Article
Publication date: 18 October 2021

Shuchen Tian, Hui Cao, Zhou Yang, Yuzhen Zhao, Wanli He and Hong Gao

Currently, conjugated nonlinear optical (NLO) materials suffer from the drawbacks of complex manufacturing process and high cost. To further study the NLO materials with…

302

Abstract

Purpose

Currently, conjugated nonlinear optical (NLO) materials suffer from the drawbacks of complex manufacturing process and high cost. To further study the NLO materials with cost-effective, it is necessary to prepare new NLO materials with satisfactory performance.

Design/methodology/approach

Pyrene derivatives with good third-order NLO properties were synthesized by combining pyrene compounds with TCNE, TCNQ, F4-TCNQ and other molecular systems by clicking chemical method.

Findings

The pyrene derivatives were characterized by ultraviolet spectrum and Z-scan. The charge-transfer of the D-p-A structures plays a key role in the absorption peak shifts. And the third-order nonlinear absorption of the products revealed good third-order NLO susceptibilities.

Research limitations/implications

The synthesis technology of pyrene derivatives is not mature enough and is in the preliminary exploration stage. So, the authors produced a relatively small number of samples and did not conduct a very comprehensive test.

Practical implications

This novel pyrene derivative is suggestive and can promote the exploration and development of the third-order nonlinear materials.

Originality/value

Four new pyrene derivatives were synthesized by selecting new molecular systems. Because of its good chemical properties and stable properties, it can be a reference for the development of third-order nonlinear materials in the future.

Access Restricted. View access options
Article
Publication date: 2 May 2017

Wenke Lu, Lili Gao, Qinghong Liu, Jingduan Zhang and Haoxin Zhang

When designing the electrode widths of the electrode-width-weighted (EWW) input interdigital transducers (IDTs) according to the envelope amplitudes of the wavelet function, the…

91

Abstract

Purpose

When designing the electrode widths of the electrode-width-weighted (EWW) input interdigital transducers (IDTs) according to the envelope amplitudes of the wavelet function, the EWW wavelet transform processor (WTP) using surface acoustic wave (SAW) devices can be fabricated. The electrode widths have influence on the frequency characteristic of the EWW WTP using SAW devices. The purpose of this research is to solve the influence of the electrode width accuracy on the frequency characteristic of the EWW WTP using SAW devices.

Design/methodology/approach

In order to solve the influence of the electrode width accuracy on the frequency characteristics of the EWW WTP using SAW devices, the function between the electrode widths and the −3 dB bandwidth is derived. That the −3 dB bandwidth varies as the electrode widths is known according to this function so that the exposure time and the etching are presented as the two key problems.

Findings

Solutions to these problems are achieved in this study. As long as there is accurate exposure time, the precision IDTs (i.e. the precision electrode widths) will be obtained. The accuracy of the exposure time for the EWW WTP using SAW devices is ±1 per cent. Because the dry etching is a type of etching technology in gas medium, it can etch nanometer lines, even more fine lines, so that the dry etching is used in EWW WTP using SAW devices.

Originality/value

Research highlights solving the influence of the electrode width accuracy on the frequency characteristic for the EWW WTP using SAW devices; deriving the function between the electrode widths and the −3 dB bandwidth (it is known from this function that the −3 dB bandwidth varies as the electrode widths); and presenting the exposure time and the etching as two key problems.

Details

Microelectronics International, vol. 34 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Access Restricted. View access options
Article
Publication date: 5 February 2018

Kaiyu Dai, Fangwei Xie, Qingsong Gao, Desheng Zhang, Erming Ding and Xinjian Guo

The purpose of this paper is to study the pressure response characteristics of the cartridge electromagnetic relief valve, which offers the problems caused by low pressure…

116

Abstract

Purpose

The purpose of this paper is to study the pressure response characteristics of the cartridge electromagnetic relief valve, which offers the problems caused by low pressure response and low efficiency in hydraulic plate shearing machines.

Design/methodology/approach

First of all the mathematical model of the cartridge electromagnetic relief valve is deduced to analyze the influence of the relevant parameters on the system pressure response. Then experiments are conducted to research the dynamic characteristics on building and relieving pressure. Through comparison of theoretical and experimental research, the results are found.

Findings

The results show that the input flow, working pressure, diameter of adjacent damping hole, and spring stiffness of the main valve have great influence on building pressure of the system, and have no influence on relieving pressure, while diameter of damping hole of control cover plate has influence on the building and relieving pressure of the system.

Originality/value

The research results provide powerful theoretical support for the parametric design of the cartridge electromagnetic relief valve in the hydraulic system of plate shearing machine.

Details

International Journal of Structural Integrity, vol. 9 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 17000
Per page
102050