Search results

1 – 3 of 3
Article
Publication date: 16 September 2024

Weiwei Yue, Yuwei Cao, Shuqi Xie, Kang Ning Cheng, Yue Ding, Cong Liu, Yan Jing Ding, Xiaofeng Zhu, Huanqing Liu and Muhammad Shafi

This study aims to improve detection efficiency of fluorescence biosensor or a graphene field-effect transistor biosensor. Graphene field-effect transistor biosensing and…

Abstract

Purpose

This study aims to improve detection efficiency of fluorescence biosensor or a graphene field-effect transistor biosensor. Graphene field-effect transistor biosensing and fluorescent biosensing were integrated and combined with magnetic nanoparticles to construct a multi-sensor integrated microfluidic biochip for detecting single-stranded DNA. Multi-sensor integrated biochip demonstrated higher detection reliability for a single target and could simultaneously detect different targets.

Design/methodology/approach

In this study, the authors integrated graphene field-effect transistor biosensing and fluorescent biosensing, combined with magnetic nanoparticles, to fabricate a multi-sensor integrated microfluidic biochip for the detection of single-stranded deoxyribonucleic acid (DNA). Graphene films synthesized through chemical vapor deposition were transferred onto a glass substrate featuring two indium tin oxide electrodes, thus establishing conductive channels for the graphene field-effect transistor. Using π-π stacking, 1-pyrenebutanoic acid succinimidyl ester was immobilized onto the graphene film to serve as a medium for anchoring the probe aptamer. The fluorophore-labeled target DNA subsequently underwent hybridization with the probe aptamer, thereby forming a fluorescence detection channel.

Findings

This paper presents a novel approach using three channels of light, electricity and magnetism for the detection of single-stranded DNA, accompanied by the design of a microfluidic detection platform integrating biosensor chips. Remarkably, the detection limit achieved is 10 pm, with an impressively low relative standard deviation of 1.007%.

Originality/value

By detecting target DNA, the photo-electro-magnetic multi-sensor graphene field-effect transistor biosensor not only enhances the reliability and efficiency of detection but also exhibits additional advantages such as compact size, affordability, portability and straightforward automation. Real-time display of detection outcomes on the host facilitates a deeper comprehension of biochemical reaction dynamics. Moreover, besides detecting the same target, the sensor can also identify diverse targets, primarily leveraging the penetrative and noninvasive nature of light.

Details

Sensor Review, vol. 44 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 13 May 2022

Qiang Zhang, Zijian Ye, Siyu Shao, Tianlin Niu and Yuwei Zhao

The current studies on remaining useful life (RUL) prediction mainly rely on convolutional neural networks (CNNs) and long short-term memories (LSTMs) and do not take full…

Abstract

Purpose

The current studies on remaining useful life (RUL) prediction mainly rely on convolutional neural networks (CNNs) and long short-term memories (LSTMs) and do not take full advantage of the attention mechanism, resulting in lack of prediction accuracy. To further improve the performance of the above models, this study aims to propose a novel end-to-end RUL prediction framework, called convolutional recurrent attention network (CRAN) to achieve high accuracy.

Design/methodology/approach

The proposed CRAN is a CNN-LSTM-based model that effectively combines the powerful feature extraction ability of CNN and sequential processing capability of LSTM. The channel attention mechanism, spatial attention mechanism and LSTM attention mechanism are incorporated in CRAN, assigning different attention coefficients to CNN and LSTM. First, features of the bearing vibration data are extracted from both time and frequency domain. Next, the training and testing set are constructed. Then, the CRAN is trained offline using the training set. Finally, online RUL estimation is performed by applying data from the testing set to the trained CRAN.

Findings

CNN-LSTM-based models have higher RUL prediction accuracy than CNN-based and LSTM-based models. Using a combination of max pooling and average pooling can reduce the loss of feature information, and in addition, the structure of the serial attention mechanism is superior to the parallel attention structure. Comparing the proposed CRAN with six different state-of-the-art methods, for the predicted results of two testing bearings, the proposed CRAN has an average reduction in the root mean square error of 57.07/80.25%, an average reduction in the mean absolute error of 62.27/85.87% and an average improvement in score of 12.65/6.57%.

Originality/value

This article provides a novel end-to-end rolling bearing RUL prediction framework, which can provide a reference for the formulation of bearing maintenance programs in the industry.

Details

Assembly Automation, vol. 42 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Book part
Publication date: 24 February 2023

Romina Gómez-Prado, Aldo Alvarez-Risco, Jorge Sánchez-Palomino, Berdy Briggitte Cuya-Velásquez, Sharon Esquerre-Botton, Luigi Leclercq-Machado, Sarahit Castillo-Benancio, Marián Arias-Meza, Micaela Jaramillo-Arévalo, Myreya De-La-Cruz-Diaz, Maria de las Mercedes Anderson-Seminario and Shyla Del-Aguila-Arcentales

In the academic field of business management, several potential theories were established during the last decades to explain companies' decisions, organizational behavior…

Abstract

In the academic field of business management, several potential theories were established during the last decades to explain companies' decisions, organizational behavior, consumer patterns, and internationalization, among others. As a result, businesses and scholars were able to analyze and decide based on theoretical approaches to explain the current conditions of the market. Secondary research was conducted to collect more than 36 management theories. This chapter aims to develop the most famous theories related to business applied in the international field. The novelty of this chapter relies on the compilation of recognized previous research studies from the academic literature and evidence in international business.

1 – 3 of 3