Search results
1 – 1 of 1Yusuke Ikemoto, Shingo Suzuki, Hiroyuki Okamoto, Hiroki Murakami, Hajime Asama, Soichiro Morishita, Taketoshi Mishima, Xin Lin and Hideo Itoh
The purpose of this paper is to describe the development of a contactless and batteryless loading sensor system that can measure the internal loading of an object structure…
Abstract
Purpose
The purpose of this paper is to describe the development of a contactless and batteryless loading sensor system that can measure the internal loading of an object structure through several covering materials for structural health monitoring.
Design/methodology/approach
The paper proposed an architecture by which two radio frequency identification (RFID) tags are used in the system. It has been difficult to realize sensing by RFID because of the low power supply. To solve the power supply problem, a method using functional distribution of RFID tags of two kinds of RFID for communication and power supply was proposed. One RFID tag is specialized as a power supply for communication of strain loading information through A/D conversion. Another is specialized to supply power for driving the strain gauges bridge circuit.
Findings
By using developed system, the measurement of the structural internal loading with 20.0 mm depth was possible through covering materials such as concrete, but also plaster board, flexible boards, silicate calcium board, blockboard, and polystyrene with a resolution performance from 10 × 10−6 to 40 × 10−6.
Originality/value
A sensor system was developed using passive RFID, which enables measurement of load‐deformation information inside a structural object. Moreover, the inexpensive wireless, batteryless devices used in this system require little maintenance, and applications for the user interface are also included in the developed system for uniform management of structural health monitoring. The developed system was evaluated in an actual situation using not only concrete but also other materials as covering materials on a structural object.
Details