Search results

1 – 7 of 7
Article
Publication date: 29 September 2023

Yue Qiao, Wang Wei, Yunxiang Li, Shengzui Xu, Lang Wei, Xu Hao and Re Xia

The purpose of this paper is to introduce a motion control method for WFF-AmphiRobot, which can effectively realize the flexible motion of the robot on land, underwater and in the…

181

Abstract

Purpose

The purpose of this paper is to introduce a motion control method for WFF-AmphiRobot, which can effectively realize the flexible motion of the robot on land, underwater and in the transition zone between land and water.

Design/methodology/approach

Based on the dynamics model, the authors selected the appropriate state variables to construct the state space model of the robot and estimated the feedback state of the robot through the maximum a posteriori probability estimation. The nonlinear predictive model controller of the robot is constructed by local linearization of the model to perform closed-loop control on the overall motion of the robot. For the control problem of the terminal trajectory, using the neural rhythmic movement theory in bionics to construct a robot central pattern generator (CPG) for real-time generation of terminal trajectory.

Findings

In this paper, the motion state of WFF-AmphiRobot is estimated, and a model-based overall motion controller for the robot and an end-effector controller based on neural rhythm control are constructed. The effectiveness of the controller and motion control algorithm is verified by simulation and physical prototype motion experiments on land and underwater, and the robot can ideally complete the desired behavior.

Originality/value

The paper designed a controller for WFF-AmphiRobot. First, when constructing the robot state estimator in this paper, the robot dynamics model is introduced as the a priori estimation model, and the error compensation of the a priori model is performed by the method of maximum a posteriori probability estimation, which improves the accuracy of the state estimator. Second, for the underwater oscillation motion characteristics of the flipper, the Hopf oscillator is used as the basis, and the flipper fluctuation equation is modified and improved by the CPG signal is adapted to the flipper oscillation demand. The controller effectively controls the position error and heading angle error within the desired range during the movement of the WFF-AmphiRobot.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 August 2024

Yunxiang Li, Yunfei Ai, Jinzhou Zou, Liangyu Liu, Chengjian Liu, Siheng Fu, Dehua Zou and Wang Wei

By analyzing the shortcomings of existing insulator robots, a novel ultra high voltage (UHV) insulator climbing robot, which could transfer between adjacent insulator strings, is…

Abstract

Purpose

By analyzing the shortcomings of existing insulator robots, a novel ultra high voltage (UHV) insulator climbing robot, which could transfer between adjacent insulator strings, is proposed for operation on 800KV multiple-string insulators. An extended inchworm-like configuration was chosen and a stable gripping claw suitable for the insulator string was designed to enable the robot to multiple-string insulators. Then a set of nonheuristic structural parameters that can influence energy consumption was chosen to formulate a nonlinear optimization problem based on the configuration, which improved the energy efficiency of the robot during progressing along a string of insulator.

Design/methodology/approach

The purpose of this paper is to design an insulator climbing robot for operation on UHV multiple-string insulators, which could transfer between adjacent insulator strings and progressed along a string of insulator with high energy efficiency.

Findings

A physical prototype was constructed that can operate at the speed of six pieces per minute (approximately 1.44 meters per minute) on a single string and complete transference between adjacent strings in 45 s. The energy consumption of joints during progressed along a string of insulator had been reduced by 38.8% with the optimized parameters, demonstrating the consistency between the experimental and simulation results.

Originality/value

An insulator climbing robot for operation on UHV multiple-string insulators has been developed with energy consumption optimization design. The robot can transfer between adjacent insulator strings and progressed along a string of insulator with high energy efficiency. The CLIBOT could be expanded to detect or clean the insulators with similar specification.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 October 2024

Jianbin Liao, Xinxin Liu, Shengzui Xu, Liangyu Liu, Yunxiang Li, Wei Wang and Zhiqiang Zhang

The purpose of this paper is to investigate the oscillating trajectory of the paddle of a fin-wheel underwater robot to enhance its propulsion efficiency in water. This robot can…

Abstract

Purpose

The purpose of this paper is to investigate the oscillating trajectory of the paddle of a fin-wheel underwater robot to enhance its propulsion efficiency in water. This robot can be used for underwater detection and military operations.

Design/methodology/approach

By studying the propulsion mode of underwater fin-based robots, it is found that such robots periodically generate a large reverse thrust during the swing process, resulting in low propulsion efficiency. Therefore, according to the propulsion characteristics of the oscillating paddle in the underwater environment, the hydrodynamic model and physical constraints of the oscillating paddle are established. Then, the oscillating gait trajectory of the paddle is optimized by the trajectory optimization method. The performance of the optimized trajectory was tested in the simulation environment and the actual underwater environment.

Findings

The prototype of the robot was built and tested in a small swimming pool. The research results confirm that the propulsion efficiency of the optimized trajectory is higher than that of the traditional trajectory under the condition of the same amplitude and period. Specifically, the maximum speed of the robot can reach 0.24 m/s when using the optimized trajectory, which is about 50% higher than that before optimization.

Originality/value

The optimized trajectory with the generated impulse as the optimization target is applied to the paddle oscillation, which can improve the thrust impulse generated by the fin-wheel underwater robot during underwater motion, thereby greatly improving the underwater propulsion efficiency and moving speed.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 12 July 2024

Yuze Wu, Jianbin Liao, Liangyu Liu, Yu Yan, Yunfei Ai, Yunxiang Li and Wang Wei

This paper aims to address the challenges of the capacitor tower maintenance robot during bolt tightening in high-voltage substations, including difficulties in bolt positioning…

Abstract

Purpose

This paper aims to address the challenges of the capacitor tower maintenance robot during bolt tightening in high-voltage substations, including difficulties in bolt positioning due to tilted angles and anti-bird cover occlusion and issues with fast and accurate docking of bolts while the base is moving.

Design/methodology/approach

This paper proposes a visual servoing method for the capacitor tower maintenance robot, including bolt pose estimation and visual servoing control. Bolt pose estimation includes four components: constructing a keypoint detection network to identify the approximate position, precise positioning, rapid prediction and calculation of bolt pose. In visual servoing, an improved position-based visual servoing (PBVS) is proposed, which eliminate steady-state error and enhance response speed during dynamic tracking by incorporating integral and differential components.

Findings

The bolt detection method exhibits high robustness against varying lighting conditions, partial occlusions, shooting distances and angles. The maximum positioning error at a distance of 250 mm is 2.8 mm. The convergence speed of the improved PBVS is 10% higher than that of the traditional PBVS when the base and target remain relatively stationary. When the base moves at a constant speed, the improved method eliminates steady-state error in dynamic tracking. When the base moves rapidly and intermittently, the maximum error of the improved method in the tracking process is 30% smaller than that of traditional PBVS.

Originality/value

This method enables real-time detection and positioning of bolts in an unstructured environment with tilt angles, variable lighting conditions and occlusion by anti-bird covers. An improved PBVS is proposed to enhance its capability in tracking dynamic targets.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Book part
Publication date: 29 May 2024

Jingxian Wang

This research aims at explaining the phenomenon of the “black children” (heihaizi), a very little-known generation who lived with concealment under the one-child policy in China…

Abstract

This research aims at explaining the phenomenon of the “black children” (heihaizi), a very little-known generation who lived with concealment under the one-child policy in China. The one-child policy was officially introduced to nationwide at the end of 1979 by permitting per couple to have one child only, later modified to a second child allowed if the first was a girl in rural China in 1984. It was officially replaced by a nation-wide two-child policy and most existing research focused on the parents’ sufferings and policy changes. The term “black children” has been mainly used to describe their absence from their family hukou registration and education. However, this research aims at expanding the meaning of being “black” to explain the children who were concealed more than at the level of family formal registration, but also physical freedom and emotional bond. What we do not yet know are the details of their lived experiences from a day-to-day base: where did they live? How were they raised up? Who were involved? Who benefited from it and who did not? In this way, this research challenges the existing scholarship on the one-child policy and repositions the “black children” as primary victims, and reveals the family as a key figure in co-producing their diminished status with the support of state power. It is very important to understand these children’s loss of citizenship and human freedom from the inside of the family because they were concealed in so many ways away from public view and interventions. This research focuses on illustrating how their lack of access to continued, stabilized, and reciprocally recognized family interactions framed their very idea of self-worth and identity.

Details

More than Just a ‘Home’: Understanding the Living Spaces of Families
Type: Book
ISBN: 978-1-83797-652-2

Keywords

Open Access
Article
Publication date: 21 March 2022

Andrew T.W. Hung

The aim of this paper is to argue for the values of familial caring and relationships in addition to the provision of social media technology during the COVID-19 pandemic in Hong…

1480

Abstract

Purpose

The aim of this paper is to argue for the values of familial caring and relationships in addition to the provision of social media technology during the COVID-19 pandemic in Hong Kong.

Design/methodology/approach

The discussion of this paper has adopted an inter-disciplinary approach by integrating health care system and psychological analysis, based on cultural philosophical argument through the hermeneutic approach of classical texts and critical analysis.

Findings

The COVID-19 pandemic has exposed the dilemma between the public health measures for COVID-19 and sustaining elderly social psychological health through familial connection. From a Confucian perspective, the practice of filial piety (xiao, 孝), which demands taking care of parents, is essential for one’s moral formation, and for one’s becoming a virtuous (ren, 仁) person. The necessity of taking care of elderly parents by adult children is not something that can be explained in terms of consequentialism. Indeed, the rising trend of instrumental rationality seems to weaken rather than strengthen the sense of filial obligation. In the face of the COVID-19 pandemic which tends to separate connections between family members, the author argues that we should emphasize the values of familial caring and relationship because it enhances the elderly’s characteristic of resilience.

Originality/value

This paper shows that while social media technology has mitigated the negative effect of social distancing, such online relationships should never replace the bodily connections between the elderly and their family members from a Confucian perspective.

Details

Public Administration and Policy, vol. 25 no. 1
Type: Research Article
ISSN: 1727-2645

Keywords

Article
Publication date: 2 November 2015

Fawzia Fahim Abdel-Mohsen and Hassan Salah Aly Emira

– The purpose of this study was to prepare colour pigments for use as spectrally selective coatings for solar absorbers.

Abstract

Purpose

The purpose of this study was to prepare colour pigments for use as spectrally selective coatings for solar absorbers.

Design/methodology/approach

Nano-particles cobalt and nickel oxides were prepared by sol–gel techniques. These oxides were prepared with its molar ratios and annealed at 200, 400, 600 and 800°C. The structure of the pigments was characterized by infrared spectrometer, differential scanning calorimetry analysis, X-ray diffraction, transmission electron microscope and scanning electron microscope.

Findings

Encapsulated cobalt and nickel oxides were completely formed at 800 and 600°C, and its colour was black and dark green, respectively. The results confirmed that black and green pigments combined selectivity with colour. Optical properties such as absorption and reflection were affected by the firing temperatures on cobalt and nickel oxides–gel polymers. All synthesized pigments consisted of nano-particles.

Research limitations/implications

The prepared samples used in the present work were synthesized from cobalt chloride and nickel acetate. The salts were dispersed in polyacrylamide as a precursor.

Practical implications

The prepared metal oxides had good solar properties.

Originality/value

Colour becomes more important for thermal solar collectors, and it has attracted interest. This might be related to a generally growing attention towards architectural integration of solar energy systems into building. Architects would prefer different colours besides black, even if lower efficiency would have to be accepted.

1 – 7 of 7