Di Wang, Xiongmian Wei, Jian Liu, Yunmian Xiao, Yongqiang Yang, Linqing Liu, Chaolin Tan, Xusheng Yang and Changjun Han
This paper aims to explore a structural optimization method to achieve the lightweight design of an aviation control stick part manufactured by laser powder bed fusion (LPBF…
Abstract
Purpose
This paper aims to explore a structural optimization method to achieve the lightweight design of an aviation control stick part manufactured by laser powder bed fusion (LPBF) additive manufacturing (AM). The utilization of LPBF for the fabrication of the part provides great freedom to its structure optimization, further reduces its weight and improves its portability.
Design/methodology/approach
The stress distribution of the model was analyzed by finite element analysis. The material distribution path of the model was optimized through topology optimization. The structure and size of the parts were designed by applying honeycomb structures for weight reduction. The lightweight designed control stick part model was printed by LPBF using AlSi10Mg.
Findings
The weight of the control stick model was reduced by 32.64% through the optimization method using honeycomb structures with various geometries. The similar stress concentrations of the control stick model indicate that weight reduction has negligible effect on its mechanical strength. The maximum stress of the lightweight designed model under loading is 230.85 MPa, which is 61.81% larger than that of the original model. The lightweight control stick part manufactured by LPBF has good printability and service performance.
Originality/value
A structural optimization method integrating topology, shape and size optimization was proposed for a lightweight AlSi10Mg control stick printed by LPBF. The effectiveness of the optimization method, the printability of the lightweight model and the service performance of LPBF-printed AlSi10Mg control stick was verified, which provided practical references for the lightweight design of AM.
Details
Keywords
Zixin Liu, Yongqiang Yang, Di Wang, Jie Chen, Yunmian Xiao, Hanxiang Zhou, Ziyu Chen and Changhui Song
This study aims to investigate the influence of the gas-flow field distribution and design on the parts quality of 316L stainless steel and the vapor–spatter behavior.
Abstract
Purpose
This study aims to investigate the influence of the gas-flow field distribution and design on the parts quality of 316L stainless steel and the vapor–spatter behavior.
Design/methodology/approach
Based on the hot-wire wind speed test method, the exact value of the gas velocity at different locations was accurately measured to establish the effect on the porosity and the mechanical properties of the parts. The influence of the placement of single or dual blow screens on the performance of the parts quality was also studied. Through scanning electron microscope and energy dispersive spectrometer, high-speed photography and other methods, the influence mechanism was explained.
Findings
It was found that too high or too low gas velocity both play a negative role, for 316L stainless steel, the range of 1.3–2.0 m/s is a suitable gas field velocity during the multilaser powder bed fusion process. And printing quality using dual blow screens is better than single.
Practical implications
The optimization of gas field design and optimal gas velocity (1.3–2.0 m/s) applied during laser melting can improve the quality of ML-PBF of 316L stainless steel.
Originality/value
This study showed the influence of the gas field on the spatter–vapor in the process during ML-PBF, and the unfavorable gas field led to the formation of pores and unmelted powders.