Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 10 August 2015

Yuncai Zhao, Fei Yang and Yongming Guo

– The purpose of this paper is to investigate the effects of parallel texturing coating on antifriction mechanism of lubricating wear-resistant coating.

279

Abstract

Purpose

The purpose of this paper is to investigate the effects of parallel texturing coating on antifriction mechanism of lubricating wear-resistant coating.

Design/methodology/approach

A KF301/WS2 lubricating wear-resisting coating was prepared on matrix material GCr15 by applying supersonic plasma spraying technology. On the basis of this sample, the KF301/WS2 modified coating with parallel pit-type texture was prepared by laser re-melting technology and a surface texturing technique. Their friction and wear behaviors were evaluated under ambient temperature, and the antifriction mechanism of two kinds of coatings were discussed.

Findings

Results showed that parallel texture has a certain impact on the tribological properties of the coating. When friction and wear reach stable state, the value of the friction coefficient of conventional coating was 0.115, while that of parallel texturing coating was 0.09, the latter decreased by 21 per cent. When the friction and wear time was up to 4 hours, the wear loss of the conventional coating was 0.29 mg, while that of the parallel texturing coating was 0.13 mg, the latter decreased by 55 per cent.

Originality/value

The tribological properties of parallel texturing coating were higher than conventional coating. That is because the change of three-body layer reduces the friction coefficient and the abrasive particles were collected by parallel texture, reducing the effects of debris.

Details

Industrial Lubrication and Tribology, vol. 67 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 9 February 2015

Yuncai Zhao, Fei Yang and Yongming Guo

The purpose of this paper is to investigate the tribological properties of a textured lubricating wear-resistant coating modified by nano-SiC at a high temperature. Its aim is to…

240

Abstract

Purpose

The purpose of this paper is to investigate the tribological properties of a textured lubricating wear-resistant coating modified by nano-SiC at a high temperature. Its aim is to explore the influence of a new composite method on the organisation and structure of sprayed coatings as well as the evolution rules governing their high-temperature tribological properties.

Design/methodology/approach

A KF301/WS2 lubricating, wear-resisting, coating was prepared on matrix material GCr15 by applying supersonic plasma spraying technology. On the basis of this sample, using nano-SiC particles as a filler, the KF301/WS2 nano-modified coating with its round, pit-type texture was prepared by laser re-melting technology and a surface texturing technique. Two kinds of coating micro-organisations and structures were examined by scanning electron microscopy, and the tribological properties of both the modified and conventional coatings were studied at a high temperature.

Findings

Results showed that nano-particles could effectively improve the coating micro-structure, and make the structure denser and more uniform, thus significantly increasing the wear resistance of the coating. When the friction and wear processes were stable, the friction coefficient decreased by 13 per cent, while the wear loss decreased by 45.9 per cent.

Originality/value

This research concentrating on the study of the process and performance of coatings doped with nano-particles by laser re-melting incorporating simultaneous surface texturing, and studies of their high-temperature tribological properties. That is because applying nano-particle modification technology to the development of wear-resistant coatings, and by applying the nano-particles to such coatings by thermal spraying technology, they can achieve a modification of the coating which makes the structure denser and more uniform.

Details

Industrial Lubrication and Tribology, vol. 67 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 2 of 2
Per page
102050