Search results

1 – 10 of 11
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 17 October 2017

Yunbo Zhang and Tsz Ho Kwok

The purpose of this paper is to establish new computer-aided-design (CAD) framework to design custom product that is fabricated additive manufacturing (AM), which can produce…

348

Abstract

Purpose

The purpose of this paper is to establish new computer-aided-design (CAD) framework to design custom product that is fabricated additive manufacturing (AM), which can produce complex three-dimensional (3D) object without additional tool or fixture. Additive manufacturing (AM) enables the fabrication of three-dimensional (3D) objects with complex shapes without additional tools and refixturing. However, it is difficult for user to use traditional computer-aided design tools to design custom products.

Design/methodology/approach

In this paper, the authors presented a design system to help user design custom 3D printable products based on some reference freeform shapes. The user can define and edit styling curves on the reference model using the interactive geometric operations for styling curve. Incorporating with the reference models, these curves can be converted into 3D printable models through the fabrication interface.

Findings

The authors tested their system with four design applications including a hollow patterned bicycle helmet, a T-rex with skin frame structure, a face mask with Voronoi patterns and an AM-specific night dress with hollow patterns.

Originality/value

The executable prototype of the presented design framework used in the customization process is publicly available.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 2 November 2017

Jiliang Mu, Zhang Qu, Zongmin Ma, Shaowen Zhang, Yunbo Shi, Jian Gao, Xiaoming Zhang, Huiliang Cao, li Qin, Jun Liu and Yanjun Li

This study aims to fabricate and manipulate ensemble spin of negative nitrogen-vacancy (NV) centres optimally for future solid atomic magnetometers/gyroscope. Parameters for…

337

Abstract

Purpose

This study aims to fabricate and manipulate ensemble spin of negative nitrogen-vacancy (NV) centres optimally for future solid atomic magnetometers/gyroscope. Parameters for sample preparation most related to magnetometers/gyroscope are, in particular, the concentration and homogeneity of the NV centres, the parameters’ microwave antenna of resonance frequency and the strength of the microwave on NV centres. Besides, the abundance of other impurities such as neutral NV centres (NV0) and substitutional nitrogen in the lattice also plays a critical role in magnetic sensing.

Design/methodology/approach

The authors succeeded in fabricating the assembly of NV centres in diamond and they determined its concentration of (2-3) × 1016 cm−3 with irradiation followed by annealing under a high temperature condition. They explored a novel magnetic resonance approach to detect the weak magnetic fields that takes advantage of the solid-state electron ensemble spin of NV centres in diamond. In particular, the authors set up a magnetic sensor on the basis of the assembly of NV centres. They succeeded in fabricating the assembly of NV centres in diamond and determined its concentration. They also clarified the magnetic field intensity measured at different positions along the antenna with different lengths, and they found the optimal position where the signal of the magnetic field reaches the maximum.

Findings

The authors mainly reported preparation, initialization, manipulation and measurement of the ensemble spin of the NV centres in diamond using optical excitation and microwave radiation methods with variation of the external magnetic field. They determined the optimal parameters of irradiation and annealing to generate the ensemble NV centres, and a concentration of NV centres as high as 1016 cm−3 in diamond was obtained. In addition, they found that sensitivity of the magnetometer using this method can reach as low as 5.22 µT/Hz currently.

Practical implications

This research can shed light on the development of an atomic magnetometer and a gyroscope on the basis of the ensemble spin of NV centres in diamond.

Social implications

High concentration spin of NV in diamond is one of the advantages compared with that of the atomic vapor cells, because it can obtain a higher concentration. When increasing the spin concentration, the spin signal is easy to detect, and macro-atomic spin magnetometer become possible. This research is the first step for solid atomic magnetometers with high spin density and high sensitivity potentially with further optimization. It has a wide range of applications from fundamental physics tests, sensor applications and navigation to detection of NMR signals.

Originality/value

As has been pointed out, in this research, the authors mainly worked on fabricating NV centres with high concentration (1015-1016 cm−3) in diamond by using optimal irradiation and annealing processes, and they quantitatively defined the NV concentration, which is important for the design of higher concentration processes in the magnetometer and gyroscope. Until now, few groups can directly define the NV concentration. Besides, the authors optimized the microwave antenna parameters experimentally and explored the dependence between the splitting of the magnetic resonance and the magnetic fields, which dictated the minimum detectable magnetic field.

Details

Sensor Review, vol. 37 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Access Restricted. View access options
Article
Publication date: 8 April 2021

Huiliang Cao, Rang Cui, Wei Liu, Tiancheng Ma, Zekai Zhang, Chong Shen and Yunbo Shi

To reduce the influence of temperature on MEMS gyroscope, this paper aims to propose a temperature drift compensation method based on variational modal decomposition (VMD)…

491

Abstract

Purpose

To reduce the influence of temperature on MEMS gyroscope, this paper aims to propose a temperature drift compensation method based on variational modal decomposition (VMD), time-frequency peak filter (TFPF), mind evolutionary algorithm (MEA) and BP neural network.

Design/methodology/approach

First, VMD decomposes gyro’s temperature drift sequence to obtain multiple intrinsic mode functions (IMF) with different center frequencies and then Sample entropy calculates, according to the complexity of the signals, they are divided into three categories, namely, noise signals, mixed signals and temperature drift signals. Then, TFPF denoises the mixed-signal, the noise signal is directly removed and the denoised sub-sequence is reconstructed, which is used as training data to train the MEA optimized BP to obtain a temperature drift compensation model. Finally, the gyro’s temperature characteristic sequence is processed by the trained model.

Findings

The experimental result proved the superiority of this method, the bias stability value of the compensation signal is 1.279 × 10–3°/h and the angular velocity random walk value is 2.132 × 10–5°/h/vHz, which is improved compared to the 3.361°/h and 1.673 × 10–2°/h/vHz of the original output signal of the gyro.

Originality/value

This study proposes a multi-dimensional processing method, which treats different noises separately, effectively protects the low-frequency characteristics and provides a high-precision training set for drift modeling. TFPF can be optimized by SEVMD parallel processing in reducing noise and retaining static characteristics, MEA algorithm can search for better threshold and connection weight of BP network and improve the model’s compensation effect.

Access Restricted. View access options
Article
Publication date: 20 March 2017

Jian Gao, Hao Wen, Zhiyuan Lin, Haidong Wu, Si Li, Xin Chen, Yun Chen and Yunbo He

Remanufacturing of worn blades with various defects normally requires processes such as scanning, regenerating a geometrical reference model, additive manufacturing (AM) through…

453

Abstract

Purpose

Remanufacturing of worn blades with various defects normally requires processes such as scanning, regenerating a geometrical reference model, additive manufacturing (AM) through laser cladding, adaptive machining and polishing and quality inspection. Unlike the manufacturing process of a new part, the most difficult problem for remanufacturing such a complex surface part is that the reference model adaptive to the worn part is no longer available or useful. The worn parts may suffer from geometrical deformation, distortion and other defects because of the effects of harsh operating conditions, thereby making their original computer aided design (CAD) models inadequate for the repair process. This paper aims to regenerate the geometric models for the worn parts, which is a key issue for implementing AM to build up the parts and adaptive machining to reform the parts. Unlike straight blades with similar cross sections, the tip geometry of the worn tip of a twist blade needs to be regenerated by a different method.

Design/methodology/approach

This paper proposes a surface extension algorithm for the reconstruction of a twist blade tip through the extremum parameterization of a B-spline basis function. Based on the cross sections of the scanned worn blade model, the given control points and knot vectors are firstly reconstructed into a B-spline curve D. After the extremum of each control point is calculated by extremum parameterization of a B-spline basis function, the unknown control points are calculated by substituting the extremum into the curve D. Once all control points are determined, the B-spline surface of the worn blade tip can be regenerated. Finally, the extension algorithm is implemented and validated with several examples.

Findings

The proposed algorithm was implemented and verified through the exampled blades. Through the extension algorithm, the tip geometry of the worn tip of a twist blade can be regenerated. This method solved a key problem for the repair of a twist blade tip. It provides an appropriate reference model for repairing worn blade tips through AM to build up the blade tip and adaptive machining/polishing processes to reform the blade geometry.

Research limitations/implications

The extension errors for different repair models are compared and analyzed. The authors found that there are several factors affecting the accuracy of the regenerated model. When the cross-section interval and the extension length are set properly, the restoration accuracy for the blade tip can be improved, which is acceptable for the repairing.

Practical implications

The lack of a reference geometric model for worn blades is a significant problem when implementing blade repair through AM and adaptive machining processes. Because the geometric reference model is unavailable for the repair process, reconstruction of the geometry of a worn blade tip is the first crucial step. The authors proposed a surface extension algorithm for the reconstruction of a twist blade tip. Through the implementation of the proposed algorithm, the blade tip model can be regenerated.

Social implications

Remanufacturing of worn blades with various defects is highly demeaned for the aerospace enterprises considering sustainable development. Unlike straight blades, repair of twist blades encountered a very difficult problem because the geometric reference model is unavailable for the repair processes. This paper proposed a different method to generate the reference model for the repair of a twist blade tip. With this model, repair of twist blades can be implemented through AM to build up the blade tip and adaptive machining to subtract the extra material.

Originality/value

The authors proposed a surface extension algorithm to reconstruct the geometric model for repair of twist blades.

Access Restricted. View access options
Article
Publication date: 19 October 2021

Zhangxin Guo, Zhiqiang Yu, Shiyi Wei, Guoliang Qi, Yongcun Li and Yunbo Luan

The cure simulation of composite structures with arbitrary geometry can be investigated by the finite element program.

257

Abstract

Purpose

The cure simulation of composite structures with arbitrary geometry can be investigated by the finite element program.

Design/methodology/approach

Finite element method is employed in this work.

Findings

The simulated results match the experimental results well, which demonstrates the finite element analysis models are reliable. Compared with the one- and two-dimensional finite element analysis, temperature and degree of cure can be calculated at any point within composite structures in the present simulation analysis. The cure simulation of composite structures with arbitrary geometry can be investigated by the finite element program.

Originality/value

A coupled thermokinetic simulation of the liquid composite molding process based on a three-dimensional finite element method is presented. The cure simulation of composite structures with arbitrary geometry can be investigated by the finite element program.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 13 November 2019

Zhangxin Guo, Zhonggui Li, Junjie Cui, Yongcun Li and Yunbo Luan

The purpose of this paper is to present a finite element analysis (FEA) of filament-wound composites, as well as application of these materials.

237

Abstract

Purpose

The purpose of this paper is to present a finite element analysis (FEA) of filament-wound composites, as well as application of these materials.

Design/methodology/approach

In this paper, a new finite element method of filament-wound composite is presented. The stress and strain fields in the composite cylinders are analyzed using the ABAQUS software packages for considering the filament undulation and crossover. The paper presented results of buckling load of composite cylinders with different types of filament-winding patterns.

Findings

The result of the example shows that the stress distributions are uniform along the cylinder length and around the circumference when the analytical approach is based on the conventional FEA. The stress distributions are not uniform along the cylinder length and around the circumference for considering the filament undulation and crossover. The stress units are arranged in a regular geometric pattern around circumference and along the axis of rotation. The analysis of the effect of filament-winding mosaic patterns on the mechanical characteristics of composite cylindrical is presented in the paper.

Originality/value

The stress and strain fields in the composite cylinders were analyzed for considering the filament undulation and crossover. The buckling load of composite cylinders with different types of filament-winding patterns was presented in this paper.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 1 June 2012

Hongli Wang and Yunbo Lu

The purpose of this paper is to investigate the new concept of trust governance and how to design trust‐related governance mechanisms.

379

Abstract

Purpose

The purpose of this paper is to investigate the new concept of trust governance and how to design trust‐related governance mechanisms.

Design/methodology/approach

The paper defines trust governance based on the nature of governance, and proposes the micro design approach from the perspective of active interpersonal strategy. Based on a literature review, trust governance emerges as a new organizing principle which needs to be taken into account when considering the fast development of knowledge. Active interpersonal strategy is highlighted as a way to build trust and several governance mechanisms are proposed.

Findings

This paper concludes that trust governance is an important and new research field, and is also a necessary route of organizational promotion from human control to self‐control. Interpersonal threat control strategy could understand and drop a hint about others'cognitive risk. Active trust could excite trust by virtue of active express friendship. Such active interpersonal strategies enable the manager to explore the situational confidence from the micro individual level, and facilitate the micro‐mechanism design.

Originality/value

The paper shows that trust governance could initiate the innovation performance of individuals, and promote interpersonal trust development and evolution.

Details

Nankai Business Review International, vol. 3 no. 2
Type: Research Article
ISSN: 2040-8749

Keywords

Access Restricted. View access options
Article
Publication date: 20 December 2017

Dan Zhao, Yunbo Bi and Yinglin Ke

This paper aims to propose a united kinematic calibration method for a dual-machine system in automatic drilling and riveting. The method takes both absolute and relative pose…

353

Abstract

Purpose

This paper aims to propose a united kinematic calibration method for a dual-machine system in automatic drilling and riveting. The method takes both absolute and relative pose accuracy into account, which will largely influence the machining accuracy of the dual-machine system and assembly quality.

Design/methodology/approach

A comprehensive kinematic model of the dual-machine system is established by the superposition of sub-models with pose constraints, which involves base frame parameters, kinematic parameters and tool frame parameters. Based on the kinematic model and the actual pose error data measured by a laser tracker, the parameters of coordinated machines are identified by the Levenberg–Marquardt method as a multi-objective nonlinear optimization problem. The identified parameters of the coordinated machines will be used in the control system.

Findings

A new calibration method for the dual-machine system is developed, including a comprehensive kinematic model and an efficient parameter identification method. The experiment results show that with the proposed method, the pose accuracy of the dual-machine system was remarkably improved, especially the relative position and orientation errors.

Practical implications

This method has been used in an aircraft assembly project. The calibrated dual-machine system shows a good performance on system coordination and machining accuracy.

Originality/value

This paper proposes a new method with high accuracy and efficiency for the dual-machine system calibration. The research can be extended to multi-machine and multi-robot fields to improve the system precision.

Access Restricted. View access options
Article
Publication date: 1 April 2014

Yunbo Bi, Weimiao Yan and Yinglin Ke

The deformation of a large fuselage panel is unavoidable due to its weak-stiffness and low-rigidity. Sometimes, the assembly accuracy of the panel is out of tolerance. The purpose…

613

Abstract

Purpose

The deformation of a large fuselage panel is unavoidable due to its weak-stiffness and low-rigidity. Sometimes, the assembly accuracy of the panel is out of tolerance. The purpose of this paper is to propose a method to predict and correct the assembly deformation of a large fuselage panel during digital assembly by using a finite element (FE) analysis and partial least squares regression (PLSR) method.

Design/methodology/approach

A FE model is proposed to optimize the layout of load-transmitting devices to reduce panel deformation after the process of hoisting and supporting. Furthermore, another FE model is established to investigate the deformation behavior of the panel. By orthogonal simulations, the position error data of measurement points representing the precision of the panel are obtained. Then, a mathematical model of the relationship between the position errors of measurement points on the panel and the displacements of numerical control positioners is developed based on the PLSR method.

Findings

The case study shows that the model has a high level of computing accuracy and that the proposed method is an efficient way to correct the panel deformation in digital assembly.

Originality/value

The results of this study will enhance the understanding of the deformation behavior of a panel in aircraft digital assembly and help to improve the assembly precision systematically and efficiently.

Details

Assembly Automation, vol. 34 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Access Restricted. View access options
Article
Publication date: 9 September 2014

Gang Liu, Wei Tang, Ying-Lin Ke, Qing-Liang Chen and Yunbo Bi

The purpose of this paper is to propose a new model for optimizing pre-joining processes quickly and accurately, guiding workers to standardized operations. For the automatic…

302

Abstract

Purpose

The purpose of this paper is to propose a new model for optimizing pre-joining processes quickly and accurately, guiding workers to standardized operations. For the automatic riveting in panel assemblies, the traditional approach of determination of pre-joining processes entirely rests on the experience of workers, which leads to the improper number, location and sequence of pre-joining, the low quality stability and the high repair rate in most cases.

Design/methodology/approach

The clearances computation with the complete finite element model for every process combination is time-consuming. Therefore a fast pre-joining processes optimization model (FPPOM) is proposed. This model treats both the measured initial clearances and the stiffness matrices of key points of panels as an input; considers the permissive clearances as an evaluation criterion; regards the optimal number, location and sequence as an objective; and takes the neighborhood-search-based adaptive genetic algorithm as a solution.

Findings

A comparison between the FPPOM and complete finite element model with clearances (CFEMC) was made in practice. Further, the results indicate that running the FPPOM is time-saving by >90 per cent compared with the CFEMC.

Practical implications

This paper provides practical insights into realizing the pre-joining processes optimization quickly.

Originality/value

This paper is the first to propose the FPPOM, which could simplify the processes, reduce the degrees of freedom of nodes and conduct the manufacturers to standardized manipulations.

Details

Assembly Automation, vol. 34 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of 11
Per page
102050