ShuYu Guo, Lin Fan, Yan He, BoHan Geng, MingQi Chen and Yuhang Wang
This study aims to investigate the effect of microtextured tools on the geometric morphology of serrated chips, and further improve the cutting performance of polycrystalline…
Abstract
Purpose
This study aims to investigate the effect of microtextured tools on the geometric morphology of serrated chips, and further improve the cutting performance of polycrystalline cubic boron nitride (PCBN) tool and extend the tool life and the surface quality of the machined surface.
Design/methodology/approach
A three-dimensional finite element cutting model of hardened steel AISI D2 with microtextured PCBN tools were established using the finite element software Abaqus, and cutting tests were carried out. Furthermore, the stress distribution in the primary deformation zone was investigated based on the triaxiality of stress, and the influence of microtexture on the geometric morphology of serrated chips and crack development was researched.
Findings
The results show that compared with nontexture tools, elliptical pits and wavy grooves microtexture tools have lower serrated degree Gs, higher serrated frequency f per unit length and more miniature serrated step Pc. The serrated phenomenon is intensified because the tensile stress zone of chips generated by nontextured tools is longer than that of elliptic pits and wavy grooves microtexture tools. Simultaneously, the maximum value of triaxiality in the tensile stress zone achieved by nontexture tools is larger than that of the two microtexture tools, and chips obtained by nontextured tools are more susceptible to propagation fractures.
Originality/value
This paper mainly studies the effect of microtexture on chip microgeometry, which is relatively little studied at present. At the same time, this paper has a certain engineering significance for PCBN tool turning hardening steel.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0149/
Details
Keywords
Jingbo Xu, Xiaohong Xu, Xiaomeng Cui, Fujun Zhang, Qiaowei Li, Weidong Wang and Yuhang Jiang
As the infrastructure of the railway, the rail could sink or deform to different degrees due to the impact of train operation or the geological changing force for years, which…
Abstract
Purpose
As the infrastructure of the railway, the rail could sink or deform to different degrees due to the impact of train operation or the geological changing force for years, which will lead to the possibility that the facilities on both sides of the rail invade the rail clearance and bring hidden dangers to the safe operation of the train. The purpose of this paper is to design the gauge to measure the clearance parameters of rail.
Design/methodology/approach
Aiming at the problem, the gauge for clearance measurement was designed based on a combination measurement method in this paper. It consists of the measurement box and the rail measurement vehicle, which integrates a laser displacement sensor, inclination sensor, gauge sensor and mileage sensor. The measurement box was placed outside the rail vehicle. Through the design of a hardware circuit and software system, the movement measurement of the clearance parameters was realized.
Findings
In this paper, the measurement equations of horizontal distance and vertical height were established, the optimal solutions of the structural parameters in the equations were obtained by Levenberg–Marquardt method, then the parameter calibration problem was also solved.
Originality/value
The gauge has high precision; its measurement uncertainty reaches 1.27 mm. The gauge has manual and automatic working modes, which are convenient to operate and have practical popularization value.
Details
Keywords
Zhining Wang, Fengya Chen, Shaohan Cai and Yuhang Chen
Based on the approach/inhibition theory of power, this study explores the relationship between sense of power and exploitative leadership. We particularly examine the role of…
Abstract
Purpose
Based on the approach/inhibition theory of power, this study explores the relationship between sense of power and exploitative leadership. We particularly examine the role of self-interest as a mediator and the role of ambition at work as a moderator.
Design/methodology/approach
The data were collected from 189 supervisors and 702 employees. We analyzed the data using path analysis to test the research model.
Findings
The results show the following: (1) sense of power positively affects exploitative leadership; (2) the effects of sense of power on exploitative leadership are mediated by self-interest; (3) the effects of self-interest on exploitative leadership are moderated by ambition at work.
Originality/value
The current study identifies self-interest as a key mediator that links sense of power to exploitative leadership and demonstrates that ambition at work moderates the process of self-interest to exploitative leadership.
Details
Keywords
Yuhang Zhang, Ying Wang and Qixin Liu
The purpose of this paper is to analyze the market share of two competing enterprises from the perspective of consumer preferences on both of their products. For different…
Abstract
Purpose
The purpose of this paper is to analyze the market share of two competing enterprises from the perspective of consumer preferences on both of their products. For different industrial types, this paper discusses how domestic firms make decisions to compete with the multinational company based on consumer’s preferences on different types of products from different companies.
Design/methodology/approach
Considering the different types of equipment manufacturing industries, consumers’ differentiated preferences for Chinese domestic equipment manufacturers and multinational equipment manufacturers, as well as the uncertainty of technological level and dependence on production factor in reality, this paper introduces the interval grey number into the Stackelberg game model and analyzes the market share of two competing enterprises and the consumer preferences for both of their products based on different industrial types.
Findings
The results show that when both of the two competing firms are engaged in R&D activities, consumers prefer domestic products, and with the improvement of technological level, this preference grows stronger, but the market share of the multinational enterprise is higher than that of the local enterprises. When the two competing enterprises are engaged in manufacturing activities, consumers are more inclined to choose products of the multinational company, and with the increasing dependence on production factors, the preference becomes stronger. Meanwhile, the market share of the multinational company is higher than the local enterprise. Therefore, from the perspective of consumer preference, China’s domestic equipment manufacturing enterprises should choose technology-intensive or technology and labor-intensive industries (or dual-intensive industries).
Originality/value
In the context of international competition, from the perspective of consumer preference, the research on industrial selection is relatively rare, and does not take into account the influence of the uncertain influence brought by technological-level and production factor dependency. Therefore, this paper analyzes the influence of technological-level and production factor dependency on consumer preference among various types of industries. Based on the concept of consumer preference, and combining with the interval grey number, the improved grey game model is constructed to analyze the influence of the uncertainty of enterprise’s technological-level and production factor dependency on the market share of two competing companies, finally coming up with the direction into which the Chinese equipment manufacturing industries should develop.
Details
Keywords
Zhicai Yu, Lili Wang, Yiwei Shao, Yun Liu, Yuhang Zhao, Yi Qin, Yingzi Zhang and Hualing He
This study aims to fabricate a novel electromagnetic interference (EMI) shielding composite aerogel with both thermal insulation and high temperature warning functions.
Abstract
Purpose
This study aims to fabricate a novel electromagnetic interference (EMI) shielding composite aerogel with both thermal insulation and high temperature warning functions.
Design/methodology/approach
An emerging bio-based polypyrrole (PPy) gel/Fe3O4/calcium alginate (PFC) EMI shielding composite aerogel was prepared by freeze-drying and in situ polymerization method. First, Fe3O4/calcium alginate (CA) aerogel was obtained by freeze-drying the Fe3O4/CA mixture. Then, PPy/Fe3O4/CA was obtained by synthesizing PPy on the surface of CA/Fe3O4 aerogel through in situ polymerization. Finally, PPy/Fe3O4/CA was immersed in porphyrin solution (cross-linking agent) to get the final PFC EMI shielding composite aerogel.
Findings
Due to the matched impedance between Fe3O4 and PPy, the EMI shielding performance of PFC composite aerogel can reach up to −8 dB. In addition, the PFC EMI shielding composite aerogel also shows excellent self-extinguishing and thermal insulation properties. After leaving the flame, the burning PFC aerogel is quickly extinguished. When the PFC aerogel is placed on the heating plate at 230 °C, the temperature on the side of the aerogel away from the heating plate is only 90.3 °C after 5 min of heating. The electrical resistance of the PFC composite aerogel can be reduced from 3.62 × 104 O to 5 × 102 O to trigger the warning light after 3 s of exposure to the alcohol lamp flame. This reversible thermal resistance response characteristic can be used to give an early warning signal when the PFC encounters high temperature or flame.
Originality/value
This work provides a novel strategy for designing a multifunctional EMI shielding composite aerogel with repeatable high temperature warning performance. This PFC composite aerogel shows potential applications in the prevention of material combustion in high temperature electromagnetic environments.
Details
Keywords
Hualing He, Yushu Wang, Jinru Liu, Ning Zhou, Yuhang Zhao and Zhicai Yu
This paper aims to investigate the dyeability of tussah silk fabric with lotus seedpod extract as the source of nontoxic and eco-friendly dyestuffs and functional agent.
Abstract
Purpose
This paper aims to investigate the dyeability of tussah silk fabric with lotus seedpod extract as the source of nontoxic and eco-friendly dyestuffs and functional agent.
Design/methodology/approach
Mordant free dyeing method was carried out using citric acid (CA) as the cross-linking agent to link the fibre and dye molecules. First, the natural pigment of oligomeric procyanidins was extracted from the lotus seedpod and then used to dye the tussah silk fabric. After the dyeing process, the dyed samples were treated with CA solution under different concentrations to improve the colour fastness.
Findings
The tussah silk fabric was successfully coloured in reddish brown through the dyeing process and charactered by using Fourier-transform infrared spectroscopy spectrometer. Moreover, lotus seedpod extract could impart excellent UV protection ability to the dyed samples, and UPF values reached up to 2000. CA dosage influenced the colour characteristics, UV protection and anti-wrinkling performance. The optimum dosage of CA was 7% (Wt.%). In addition, dyed silk fabric showed good antibacterial activity and the calculated bacteriostatic rate against Escherichia coli and Staphylococcus aureus were 83.27 and 60.2%, respectively.
Practical implications
This bio-dyeing strategy provided a simple and effective method for sustainable tussah silk fabric dyeing process.
Originality/value
This paper provides a novel dyeing strategy for mordant free dyeing and functionalization of tussah silk fabric, with lotus seedpod extract as natural pigment and CA as cross-linking agent to link the fibre and dye molecules.
Details
Keywords
Qing Jiang, Yuhang Wan, Xiaoqian Li, Xueru Qu, Shengnan Ouyang, Yi Qin, Zhenyu Zhu, Yushu Wang, Hualing He and Zhicai Yu
This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without…
Abstract
Purpose
This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without environmental pollution.
Design/methodology/approach
SA/SiO2 aerogel with refractory heat insulation and enhanced radiative cooling performance was fabricated by freeze-drying method, which can be used in firefighting clothing. The microstructure, chemical composition, thermal stability, and thermal emissivity were analyzed using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analyzer and infrared emissivity measurement instrument. The radiative cooling effect of aerogel was studied using thermal infrared imager and thermocouple.
Findings
When the addition of SiO2 is 25% of SA, the prepared aerogel has excellent heat insulation and a high radiative cooling effect. Under a clear sky, the temperature of SA/SiO2 aerogel is 9.4°C lower than that of pure SA aerogel and 22.1°C lower than that of the simulated environment. In addition, aerogel has more exceptional heat insulation effect than other common fabrics in the heat insulation performance test.
Research limitations/implications
SA/SiO2 aerogel has passive radiative cooling function, which can efficaciously economize global energy, and it is paramount to environment-friendly cooling.
Practical implications
This method could pave the way for high-performance cooling materials designed for firefighting clothing to keep maintain the wearing comfort of firefighters.
Originality/value
SA/SiO2 aerogel used in firefighting clothing can release heat to the low-temperature outer space in the form of thermal radiation to achieve its own cooling purpose, without additional energy supply.
Graphical abstract
Details
Keywords
Xishuang Jing, Duanping Lv, Fubao Xie, Chengyang Zhang, Siyu Chen and Ben Mou
3D printing technology has the characteristics of fast forming and low cost and can manufacture parts with complex structures. At present, it has been widely used in various…
Abstract
Purpose
3D printing technology has the characteristics of fast forming and low cost and can manufacture parts with complex structures. At present, it has been widely used in various manufacturing fields. However, traditional 3-axis printing has limitations of the support structure and step effect due to its low degree of freedom. The purpose of this paper is to propose a robotic 3D printing system that can realize support-free printing of parts with complex structures.
Design/methodology/approach
A robotic 3D printing system consisting of a 6-degrees of freedom robotic manipulator with a material extrusion system is proposed for multi-axis additive manufacturing applications. And the authors propose an approximation method for the extrusion value E based on the accumulated arc length of the already printed points, which is used to realize the synchronous movement between multiple systems. Compared with the traditional 3-axis printing system, the proposed robotic 3D printing system can provide greater flexibility when printing complex structures and even realize curved layer printing.
Findings
Two printing experiments show that compared with traditional 3D printing, a multi-axis 3D printing system saves 47% and 79% of materials, respectively, and the mechanical properties of curved layer printing using a multi-axis 3D printing system are also better than that of 3-axis printing.
Originality/value
This paper shows a simple and effective method to realize the synchronous movement between multiple systems so as to develop a robotic 3D printing system that can realize support-free printing and verifies the feasibility of the system through experiments.
Details
Keywords
Hao Wang, GuoHua Gao, Qixiao Xia, Han Ren, LianShi Li and Yuhang Zheng
The purpose of this paper is to present a novel stretch-retractable single section (SRSS) continuum manipulator which owns three degrees of freedom and higher motion range in…
Abstract
Purpose
The purpose of this paper is to present a novel stretch-retractable single section (SRSS) continuum manipulator which owns three degrees of freedom and higher motion range in three-dimension workspace than regular single continuum manipulator. Moreover, the motion accuracy was analyzed based on the kinematic model. In addition, the experiments were carried out for validation of the theory.
Design/methodology/approach
A kinematics model of the SRSS continuum manipulator is presented for analysis on bending, rotating and retracting in its workspace. To discuss the motion accuracy of the SRSS continuum manipulator, the dexterity theory was introduced based on the decomposing of the Jacobian matrix. In addition, the accuracy of motion is estimated based on the inverse kinematics and dexterity theory. To verify the presented theory, the motion of free end was tracked by an electromagnetic positioning system. According to the comparison of experimental value and theoretical analysis, the free end error of SRSS continuum manipulator is less than 6.24 per cent in the region with favorable dexterity.
Findings
This paper presents a new stretch-retractable continuum manipulator that the structure was composed of several springs as the backbone. Thus, the SRSS continuum manipulator could own wide motion range depending on its retractable structure. Then, the motion accuracy character of the SRSS continuum manipulator in the different regions of its workspace was obtained both theoretically and experimentally. The results show that the high accuracy region distributes in the vicinity of the outer boundary of the workspace. The motion accuracy gradually decreases with the motion position approaching to the center of its workspace.
Research limitations/implications
The presented SRSS continuum manipulator owns three degrees of freedom. The future work would be focused on the two-section structure which will own six degrees of freedom.
Practical implications
In this study, the SRSS continuum manipulator could be extended to six degrees of freedom continuum robot with two sections that is less one section than regular six degrees of freedom with three single section continuum manipulator.
Originality/value
The value of this study is to propose a SRSS continuum manipulator which owns three degrees of freedom and could stretch and retract to expend workspace, for which the accuracy in different regions of the workspace was analyzed and validated based on the kinematics model and experiments. The results could be feasible to plan the motion space of the SRSS continuum manipulator for keeping in suitable accuracy region.
Details
Keywords
Shuhao Li, Yuhang Zhang and Mimi Chen
This study aims to investigate the different effects of physical and social servicescapes on brand love for internet-famous restaurants, focusing on their pathways and strengths…
Abstract
Purpose
This study aims to investigate the different effects of physical and social servicescapes on brand love for internet-famous restaurants, focusing on their pathways and strengths of influence.
Design/methodology/approach
Structural equation modeling was applied to analyze data from 387 online questionnaires in China.
Findings
Results indicate that social servicescape directly influences brand love for internet-famous restaurants, while physical servicescape does not. The effect of physical servicescape on brand love for internet-famous restaurants is mediated by perceived coolness and perceived enjoyment, whereas social servicescape’s influence is mediated solely by perceived enjoyment. Overall, physical servicescape has a stronger impact on brand love for internet-famous restaurants compared to social servicescape.
Practical implications
The findings help internet-famous restaurants create effective physical and social servicescapes to enhance brand love, underscoring that physical servicescape is more crucial than social servicescape for cultivating this love.
Originality/value
This study contributes to the literature by analyzing the heterogeneous pathways and strengths of physical and social servicescapes influencing brand love for internet-famous restaurants, while highlighting the mediating role of perceived coolness and expanding the application scope of cognitive appraisal theory.