Sa Xiao, Xuyang Chen, Yuankai Lu, Jinhua Ye and Haibin Wu
Imitation learning is a powerful tool for planning the trajectory of robotic end-effectors in Cartesian space. Present methods can adapt the trajectory to the obstacle; however…
Abstract
Purpose
Imitation learning is a powerful tool for planning the trajectory of robotic end-effectors in Cartesian space. Present methods can adapt the trajectory to the obstacle; however, the solutions may not always satisfy users, whereas it is hard for a nonexpert user to teach the robot to avoid obstacles in time as he/she wishes through demonstrations. This paper aims to address the above problem by proposing an approach that combines human supervision with the kernelized movement primitives (KMP) model.
Design/methodology/approach
This approach first extracts the reference database used to train KMP from demonstrations by using Gaussian mixture model and Gaussian mixture regression. Subsequently, KMP is used to modulate the trajectory of robotic end-effectors in real time based on feedback from its interaction with humans to avoid obstacles, which benefits from a novel reference database update strategy. The user can test different obstacle avoidance trajectories in the current task until a satisfactory solution is found.
Findings
Experiments performed with the KUKA cobot for obstacle avoidance show that this approach can adapt the trajectories of the robotic end-effector to the user’s wishes in real time, including trajectories that the robot has already passed and has not yet passed. Simulation comparisons also show that it exhibits better performance than KMP with the original reference database update strategy.
Originality/value
An interactive learning approach based on KMP is proposed and verified, which not only enables users to plan the trajectory of robotic end-effectors for obstacle avoidance more conveniently and efficiently but also provides an effective idea for accomplishing interactive learning tasks under constraints.
Details
Keywords
Jianxuan Wu, Chenyang Song, Sa Xiao, Yuankai Lu and Haibin Wu
Polishing is a crucial process in mechanical manufacturing. The use of industrial robots to automate polishing is an inevitable trend in future developments. However, current…
Abstract
Purpose
Polishing is a crucial process in mechanical manufacturing. The use of industrial robots to automate polishing is an inevitable trend in future developments. However, current robotic polishing tools are too large to reach inside deep holes or grooves in workpieces. This study aims to use a pneumatic artificial muscle (PAM) as the actuator and designs a force-controlled end-effector to reach inside the deep and narrow areas in the workpiece.
Design/methodology/approach
This approach first addresses the challenge of converting the tensile force generated by the PAM into pushing force through mechanism design. In addition, a dynamics model of the end-effector was established based on the three-element model of the PAM. A combined control strategy was proposed to enhance force control accuracy and adaptability during the polishing process.
Findings
Experiments were conducted on a robotic platform equipped with the proposed end-effector. The experimental results demonstrate that the end-effector can polish the inner end face of holes or grooves with diameters as small as 80 mm and depths reaching 200 mm. By implementing the combined control strategies, the target force tracking error was reduced by 48.66% compared to the use of the PID controller alone.
Originality/value
A new force-controlled end-effector based on the PAM is designed for robotic polishing. According to the experimental result, this end-effector can polish not only the outer surfaces of the workpiece but also the internal surfaces of workpieces with deep holes or grooves specifically. By using the combined control strategy proposed in this paper, the end-effector significantly improves force control precision and polishing quality.
Details
Keywords
Yuankai Zhou, Xue Zuo and Hua Zhu
Running-in is a transient process prior to steady state and of great importance for mechanical performance. To reveal the fractal behavior in the running-in process, the…
Abstract
Purpose
Running-in is a transient process prior to steady state and of great importance for mechanical performance. To reveal the fractal behavior in the running-in process, the steel-on-steel friction and wear tests were performed.
Design/methodology/approach
The friction coefficient, friction temperature, friction noise and vibration were recorded, and the surface profile of lower sample was measured on line. The signals and profiles were characterized by correlation dimension and box-counting dimension, respectively.
Findings
The signals have the consistent fractal evolvement law, that is, the correlation dimension increases and tends to a stable value. The box-counting dimension of one surface becomes close to that of the other surface. The running-in process can be interpreted as a process in which the fractal dimension of friction signals increases, and the counter surfaces spontaneously adapt to and modify each other to form a spatial ordered structure.
Originality/value
The results reveal the running-in behavior from a new perspective.
Details
Keywords
Minglang Zhang, Xue Zuo and Yuankai Zhou
The purpose of this paper is to reveal the dynamic contact characteristics of the slip ring. Dynamic contact resistance models considering wear and self-excited were established…
Abstract
Purpose
The purpose of this paper is to reveal the dynamic contact characteristics of the slip ring. Dynamic contact resistance models considering wear and self-excited were established based on fractal theory.
Design/methodology/approach
The effects of tangential velocity, stiffness and damping coefficient on dynamic contact resistance are studied. The relationships between fractal parameters, wear time and contact parameters are revealed.
Findings
The results show that the total contact area decreases with the friction coefficient and fractal roughness under the same load. Self-excited vibration occurs at a low speed (less than 0.6 m/s). It transforms from stick-slip motion at 0.4 m/s to pure sliding at 0.5 m/s. A high stiffness makes contact resistance fluctuate violently, while increasing the damping coefficient can suppress the self-excited vibration and reduce the dynamic contact resistance. The fractal contact resistance model considering wear is established based on the fractal parameters models. The validity of the model is verified by the wear tests.
Originality/value
The results have a great significance to study the electrical contact behavior of conductive slip ring.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0300/