Yuanfeng Jia, Nana Ren, Huadong Yue, Jianru Deng and Yali Liu
The paper developed a novel gallic acid-based rust conversion emulsion (RCE) that is applied in the treatment of rusted steels. The purpose of this paper is to investigate the…
Abstract
Purpose
The paper developed a novel gallic acid-based rust conversion emulsion (RCE) that is applied in the treatment of rusted steels. The purpose of this paper is to investigate the methods for the synthesis of RCE and study the mechanism of rust conversion.
Design/methodology/approach
Conversion emulsion was prepared using styrene, acrylate and self-developed gallic acid (GA)-based rust converter (GRC) via seed emulsion polymerisation. The polymerisable GRC was synthesised by the ring-opening reaction of glycidyl methacrylate with natural GA. The effects of the GRC dosage and its feeding modes on the RCE synthesis were analysed. The corrosion resistance, surface morphology, composition and mechanism of rust conversion coatings were studied using electrochemical tests, scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), respectively.
Findings
The results showed that conversion coating on rusted steels treated with RCE, with various dosages of GRC (weight per cent), synthesised using seed emulsion polymerisation, exhibited the best adhesion and corrosion resistance. Raman spectroscopy revealed that RCE converted the original multiphase rust into stable crystalline phases of α-Fe2O3 and Fe3O4. According to XPS and energy dispersive X-ray analysis, the phenolic hydroxyl groups of RCE were proposed to chelate with Fe ions to form macromolecular ferrum compounds.
Research limitations/implications
The pre-rusted steels demonstrated a better corrosion resistance than rust-free steels after treatment with RCE.
Practical implications
The paper developed a novel GA-based RCE with high efficiency and environment-friendly method.
Originality/value
This work is expected to replace the conventional rust conversion paints and cause a significant impact on extending the service life of rusted steels.
Details
Keywords
Hakan Hafizoglu, Huseyin Emrah Konokman, Latif Kesemen and Ali Kursat Atay
This paper aims to investigate the effects of fragment impacts to shaped charge warheads in terms of shaped charge jet formation geometries and penetration performances.
Abstract
Purpose
This paper aims to investigate the effects of fragment impacts to shaped charge warheads in terms of shaped charge jet formation geometries and penetration performances.
Design/methodology/approach
In experimental process, a fragment was accelerated to a shaped charge warhead by means of a powder gun to a velocity more than 1,000 m/s, and this impact led to conical damage in the explosive of the warhead. Deformation on the warhead was visualized using X-ray technique to observe holes generated during fragment impact. Penetration test was performed against AISI 1040 steel plates with the damaged shaped charge warhead. Penetration performance of shaped charge jet, which deviated from the symmetry axis, was simulated by using SPEED software with 3-D Eulerian method to validate the numerical modelling method by comparing penetration test and simulation results of damaged warhead.
Findings
Simulation and test results showed good correlation for the warhead in terms of penetration depth and hole geometry at the impact surface of steel plates. In addition, the effects of the numbers and the geometries of fragment holes on shaped charge jet penetration performances were investigated with validated numerical methods. Simulation results showed that the increase in the number of fragment holes in the explosive of the warhead led to particulation of shaped charge jet that diminished penetration depth in the target plate. Additionally, simulation results also showed that the fragment hole geometry in the explosive after different fragment impact angles affected the amount of jet deviation from the symmetry axis as well as penetration depth in the target plate.
Practical implications
The results obtained from the current study revealed that fragment impact angle and different number of fragment impact reduced the penetration performance of shaped charge warhead by influencing the symmetry of shaped charge jet negatively.
Originality/value
The current study fulfils the need to investigate how fragment impact on the shaped charge warhead affect the formation symmetry of shaped charge jet as well as penetration performance by experimental and numerical methods. Penetration performance result of asymmetric jet is compared by experimental and numerical studies. A detailed methodology on numerically modelling of the effect of fragment impact angle and number of fragment impact on shaped charge jet performance is given in this study.