Xuemei Pan, Jianhui Liu, Youtang Li, Feilong Hua, Xiaochuang Chen and Zhen Zhang
The stress state near the notch affects fatigue damage directly, but quantifying the stress field is difficult. The purpose of this study is to provide a mathematical description…
Abstract
Purpose
The stress state near the notch affects fatigue damage directly, but quantifying the stress field is difficult. The purpose of this study is to provide a mathematical description method of the stress field near the notch to achieve a reliable assessment of the fatigue life of notched specimens.
Design/methodology/approach
Firstly, the stress distribution of notched specimens of different materials and shapes under different stress levels is investigated, and a method for calculating the stress gradient impact factor is presented. Then, the newly defined stress gradient impact factor is used to describe the stress field near the notch, and an expression for the stress at any point along a specified path is developed. Furthermore, by combining the mathematical expressions for the stress field near the notch, a multiaxial fatigue life prediction model for notched shaft specimens is established based on the damage mechanics theory and closed solution method.
Findings
The stress gradient factor for notched specimens with higher stress concentration factors (V60-notch, V90-notch) varies to a certain extent when the external load and material change, but for notched specimens with relatively lower stress concentration factors (C-notch, U-notch, stepped shaft), the stress gradient factor hardly varies with the change in load and material, indicating that the shape of the notch has a greater influence on the stress gradient. It is also found that the effect of size on the stress gradient factor is not obvious for notched specimens with different shapes, there is an obvious positive correlation between the normal stress gradient factor and the normal stress concentration factor compared with the relationship between the shear stress gradient factor and the stress concentration factor. Moreover, the predicted results of the proposed model are in better agreement with the experimental results of five kinds of materials compared with the FS model, the SWT model, and the Manson–Coffin equation.
Originality/value
In this paper, a new stress gradient factor is defined based on the stress distribution of a smooth specimen. Then, a mathematical description of the stress field near the notch is provided, which contains the nominal stress, notch size, and stress concentration factor which is calculated by the finite element method (FEM). In addition, a multiaxial fatigue life prediction model for shaft specimens with different notch shapes is established with the newly established expressions based on the theory of damage mechanics and the closed solution method.
Details
Keywords
Shenglei Wu, Jianhui Liu, Yazhou Wang, Jumei Lu and Ziyang Zhang
Sufficient sample data are the necessary condition to ensure high reliability; however, there are relatively poor fatigue test data in the engineering, which affects fatigue…
Abstract
Purpose
Sufficient sample data are the necessary condition to ensure high reliability; however, there are relatively poor fatigue test data in the engineering, which affects fatigue life's prediction accuracy. Based on this, this research intends to analyze the fatigue data with small sample characteristics, and then realize the life assessment under different stress levels.
Design/methodology/approach
Firstly, the Bootstrap method and the principle of fatigue life percentile consistency are used to realize sample aggregation and information fusion. Secondly, the classical outlier detection algorithm (DBSCAN) is used to check the sample data. Then, based on the stress field intensity method, the influence of the non-uniform stress field near the notch root on the fatigue life is analyzed, and the calculation methods of the fatigue damage zone radius and the weighting function are revised. Finally, combined with Weibull distribution, a framework for assessing multiaxial low-cycle fatigue life has been developed.
Findings
The experimental data of Q355(D) material verified the model and compared it with the Yao’s stress field intensity method. The results show that the predictions of the model put forward in this research are all located within the double dispersion zone, with better prediction accuracies than the Yao’s stress field intensity method.
Originality/value
Aiming at the fatigue test data with small sample characteristics, this research has presented a new method of notch fatigue analysis based on the stress field intensity method, which is combined with the Weibull distribution to construct a low-cycle fatigue life analysis framework, to promote the development of multiaxial fatigue from experimental studies to practical engineering applications.