Search results

1 – 10 of 55
Content available
Book part
Publication date: 24 April 2023

Abstract

Details

Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications
Type: Book
ISBN: 978-1-83753-212-4

Content available
Book part
Publication date: 24 April 2023

Abstract

Details

Essays in Honor of Joon Y. Park: Econometric Theory
Type: Book
ISBN: 978-1-83753-209-4

Book part
Publication date: 24 April 2023

J. Isaac Miller

Transient climate sensitivity relates total climate forcings from anthropogenic and other sources to surface temperature. Global transient climate sensitivity is well studied, as…

Abstract

Transient climate sensitivity relates total climate forcings from anthropogenic and other sources to surface temperature. Global transient climate sensitivity is well studied, as are the related concepts of equilibrium climate sensitivity (ECS) and transient climate response (TCR), but spatially disaggregated local climate sensitivity (LCS) is less so. An energy balance model (EBM) and an easily implemented semiparametric statistical approach are proposed to estimate LCS using the historical record and to assess its contribution to global transient climate sensitivity. Results suggest that areas dominated by ocean tend to import energy, they are relatively more sensitive to forcings, but they warm more slowly than areas dominated by land. Economic implications are discussed.

Details

Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications
Type: Book
ISBN: 978-1-83753-212-4

Keywords

Book part
Publication date: 24 April 2023

Yingqian Lin and Yundong Tu

This chapter develops an asymptotic theory for a general transformation model with a time trend, stationary regressors, and unit root nonstationary regressors. This model extends…

Abstract

This chapter develops an asymptotic theory for a general transformation model with a time trend, stationary regressors, and unit root nonstationary regressors. This model extends that of Han (1987) to incorporate time trend and nonstationary regressors. When the transformation is specified as an identity function, the model reduces to the conventional cointegrating regression, possibly with a time trend and other stationary regressors, which has been studied in Phillips and Durlauf (1986) and Park and Phillips (1988, 1989). The limiting distributions of the extremum estimator of the transformation parameter and the plug-in estimators of other model parameters are found to critically depend upon the transformation function and the order of the time trend. Simulations demonstrate that the estimators perform well in finite samples.

Details

Essays in Honor of Joon Y. Park: Econometric Theory
Type: Book
ISBN: 978-1-83753-209-4

Keywords

Abstract

Details

Essays in Honor of Peter C. B. Phillips
Type: Book
ISBN: 978-1-78441-183-1

Book part
Publication date: 24 April 2023

Ying Zhou, Hsein Kew and Jiti Gao

This chapter considers the estimation of a parametric single-index predictive regression model with integrated predictors. This model can handle a wide variety of non-linear…

Abstract

This chapter considers the estimation of a parametric single-index predictive regression model with integrated predictors. This model can handle a wide variety of non-linear relationships between the regressand and the single-index component containing either the cointegrated predictors or the non-cointegrated predictors. The authors introduce a new estimation procedure for the model and investigate its finite sample properties via Monte Carlo simulations. This model is then used to examine stock return predictability via various combinations of integrated lagged economic and financial variables.

Book part
Publication date: 24 April 2023

Martín Almuzara, Gabriele Fiorentini and Enrique Sentana

The authors analyze a model for N different measurements of a persistent latent time series when measurement errors are mean-reverting, which implies a common trend among…

Abstract

The authors analyze a model for N different measurements of a persistent latent time series when measurement errors are mean-reverting, which implies a common trend among measurements. The authors study the consequences of overdifferencing, finding potentially large biases in maximum likelihood estimators (MLE) of the dynamics parameters and reductions in the precision of smoothed estimates of the latent variable, especially for multiperiod objects such as quinquennial growth rates. The authors also develop an R2 measure of common trend observability that determines the severity of misspecification. Finally, the authors apply their framework to US quarterly data on GDE and GDI, obtaining an improved aggregate output measure.

Details

Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications
Type: Book
ISBN: 978-1-83753-212-4

Keywords

Book part
Publication date: 24 April 2023

Whayoung Jung and Ji Hyung Lee

This chapter studies the dynamic responses of the conditional quantiles and their applications in macroeconomics and finance. The authors build a multi-equation autoregressive…

Abstract

This chapter studies the dynamic responses of the conditional quantiles and their applications in macroeconomics and finance. The authors build a multi-equation autoregressive conditional quantile model and propose a new construction of quantile impulse response functions (QIRFs). The tool set of QIRFs provides detailed distributional evolution of an outcome variable to economic shocks. The authors show the left tail of economic activity is the most responsive to monetary policy and financial shocks. The impacts of the shocks on Growth-at-Risk (the 5% quantile of economic activity) during the Global Financial Crisis are assessed. The authors also examine how the economy responds to a hypothetical financial distress scenario.

Details

Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications
Type: Book
ISBN: 978-1-83753-212-4

Keywords

Book part
Publication date: 24 April 2023

Florens Odendahl, Barbara Rossi and Tatevik Sekhposyan

The authors propose novel tests for the detection of Markov switching deviations from forecast rationality. Existing forecast rationality tests either focus on constant deviations…

Abstract

The authors propose novel tests for the detection of Markov switching deviations from forecast rationality. Existing forecast rationality tests either focus on constant deviations from forecast rationality over the full sample or are constructed to detect smooth deviations based on non-parametric techniques. In contrast, the proposed tests are parametric and have an advantage in detecting abrupt departures from unbiasedness and efficiency, which the authors demonstrate with Monte Carlo simulations. Using the proposed tests, the authors investigate whether Blue Chip Financial Forecasts (BCFF) for the Federal Funds Rate (FFR) are unbiased. The tests find evidence of a state-dependent bias: forecasters tend to systematically overpredict interest rates during periods of monetary easing, while the forecasts are unbiased otherwise. The authors show that a similar state-dependent bias is also present in market-based forecasts of interest rates, but not in the forecasts of real GDP growth and GDP deflator-based inflation. The results emphasize the special role played by monetary policy in shaping interest rate expectations above and beyond macroeconomic fundamentals.

Details

Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications
Type: Book
ISBN: 978-1-83753-212-4

Keywords

Book part
Publication date: 24 April 2023

Han-Ying Liang, Yu Shen and Qiying Wang

Joon Y. Park is one of the pioneers in developing nonlinear cointegrating regression. Since his initial work with Phillips (Park & Phillips, 2001) in the area, the past two…

Abstract

Joon Y. Park is one of the pioneers in developing nonlinear cointegrating regression. Since his initial work with Phillips (Park & Phillips, 2001) in the area, the past two decades have witnessed a surge of interest in modeling nonlinear nonstationarity in macroeconomic and financial time series, including parametric, nonparametric and semiparametric specifications of such models. These developments have provided a framework of econometric estimation and inference for a wide class of nonlinear, nonstationary relationships. In honor of Joon Y. Park, this chapter contributes to this area by exploring nonparametric estimation of functional-coefficient cointegrating regression models where the structural equation errors are serially dependent and the regressor is endogenous. The self-normalized local kernel and local linear estimators are shown to be asymptotic normal and to be pivotal upon an estimation of co-variances. Our new results improve those of Cai et al. (2009) and open up inference by conventional nonparametric method to a wide class of potentially nonlinear cointegrated relations.

1 – 10 of 55