Search results

1 – 5 of 5
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 20 October 2014

Haibin Wu, Yixian Su, Jinjin Shi, Jinwen Li and Jinhua Ye

– The aim of the research is to achieve a robot skin which is easy to use, and can detect both position and force interacted between robot and environments.

454

Abstract

Purpose

The aim of the research is to achieve a robot skin which is easy to use, and can detect both position and force interacted between robot and environments.

Design/methodology/approach

The new type of robot skin proposed in this paper includes two functional modules – contact position sensor and contact force sensor. The contact position sensor module is based on the resistor divider principle, which consists of two perpendicular conductive fiber layers and insulated dot spacer between them. The contact force sensor module is based on capacitance change theory, which consists of two soft conductive plates and a viscoelastic layer between them. By combining the two modules, the soft robot skin was designed.

Findings

Simulation and experiment results demonstrate that the proposed robot skin design is feasible and effective enough to sense contact position and contact force simultaneously.

Practical implications

This robot skin is low-cost and easy to make and use, which provides safety solutions for most of the robot.

Originality/value

For the first time, an integrated robot skin which can get contact position and force information simultaneously is designed. Unlike general tactile sensor matrices, this robot skin has only six leads. Furthermore, the number of leads does not increase with the enlarging of sensor area. Soft and simple structure of the robot skin makes it possible to cover any region of the robot body.

Details

Industrial Robot: An International Journal, vol. 41 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Access Restricted. View access options
Article
Publication date: 9 August 2022

Bingjun Li, Shuhua Zhang, Wenyan Li and Yifan Zhang

Grey modeling technique is an important element of grey system theory, and academic articles applied to agricultural science research have been published since 1985, proving the…

481

Abstract

Purpose

Grey modeling technique is an important element of grey system theory, and academic articles applied to agricultural science research have been published since 1985, proving the broad applicability and effectiveness of the technique from different aspects and providing a new means to solve agricultural science problems. The analysis of the connotation and trend of the application of grey modeling technique in agricultural science research contributes to the enrichment of grey technique and the development of agricultural science in multiple dimensions.

Design/methodology/approach

Based on the relevant literature selected from China National Knowledge Infrastructure, the Web of Science, SpiScholar and other databases in the past 37 years (1985–2021), this paper firstly applied the bibliometric method to quantitatively visualize and systematically analyze the trend of publication, productive author, productive institution, and highly cited literature. Then, the literature is combed by the application of different grey modeling techniques in agricultural science research, and the literature research progress is systematically analyzed.

Findings

The results show that grey model technology has broad prospects in the field of agricultural science research. Agricultural universities and research institutes are the main research forces in the application of grey model technology in agricultural science research, and have certain inheritance. The application of grey model technology in agricultural science research has wide applicability and precise practicability.

Originality/value

By analyzing and summarizing the application trend of grey model technology in agricultural science research, the research hotspot, research frontier and valuable research directions of grey model technology in agricultural science research can be more clearly grasped.

Details

Grey Systems: Theory and Application, vol. 12 no. 4
Type: Research Article
ISSN: 2043-9377

Keywords

Access Restricted. View access options
Article
Publication date: 10 November 2022

Sifeng Liu, Yong Tao, Naiming Xie, Liangyan Tao and Mingli Hu

The purpose of this paper is to summarize the advances in grey system theory research and various application achievements in science and engineering. At the same time, it…

344

Abstract

Purpose

The purpose of this paper is to summarize the advances in grey system theory research and various application achievements in science and engineering. At the same time, it commemorates the 40th anniversary of the birth of grey system theory and the 10th anniversary of Grey Systems–Theory and Application.

Design/methodology/approach

Firstly, the innovations of theoretical research in grey system theory were summarized and some of the widely recognized new results are briefly described. By searching and combing the research results of grey system theory in China national knowledge infrastructure (CNKI) database and Web of Science by Institute for Scientific Information (ISI), this paper shows the rapid development trend of grey system theory in the past 40 years, and the successful applications of grey system theory in the fields of social sciences, natural sciences and engineering technologies.

Findings

More than 227 thousands literature were found by input 10 phrases such as grey system, grey number and sequence operator etc. in CNKI database. After entering the new century, the number of grey system papers included in CNKI database is increasing rapidly. Since 2008, more than 10 thousands papers have been included per year and more than 15 thousands papers have been included per year since 2014. Grey system method and model are widely used in physics, chemistry, biology and other fields of natural science, as well as transportation, electric power, machinery and other fields of engineering technology, and a large number of valuable results have been achieved.

Practical implications

It can be seen that the grey system theory plays an important role in promoting China’s scientific and technological progress, innovation and development and high-level talent training from tens of thousands of literatures marked with important national science and technology projects and a large number of grey system literatures published by China’s double first-class universities and double first-class discipline construction universities.

Originality/value

Both innovations of theoretical research and practical application play important role in the growth of new theory. The innovations of theoretical research provide methods and tools for practical application, which is conducive to improve application efficiency and broaden application fields. A large number of practical applications needs have become the source of theoretical innovation and the solid background for the birth of theoretical innovation achievements.

Details

Grey Systems: Theory and Application, vol. 12 no. 4
Type: Research Article
ISSN: 2043-9377

Keywords

Access Restricted. View access options
Article
Publication date: 20 October 2014

He Xu, Yan Xu, Hu Fu, Yixian Xu, X.Z. Gao and Khalil Alipour

The purpose of this paper is to explore a novel control approach for swift and accurate positioning and tracking of a mobile robot. Coordinated movement of the mobile robot-body…

412

Abstract

Purpose

The purpose of this paper is to explore a novel control approach for swift and accurate positioning and tracking of a mobile robot. Coordinated movement of the mobile robot-body and chameleon-inspired binocular “negative correlation” visual system (CIBNCVS) with neck has rarely been considered in conventional mobile robot design. However, it is vital in swift and accurate positioning and tracking of the target. Consequently, it is valuable to find an optimized method where the robot-body, the biomimetic eyes and neck could achieve optimal coordinated movement.

Design/methodology/approach

Based on a wheeled mobile robot, a biomimetic dual Pan–Tilt–Zoom visual system with neck is constructed. The cameras can rely on the unique “negative correlation” mode of chameleon vision, and cooperate with neck, achieving swift search of the 160° scope in front of the robot. Genetic algorithm is used to obtain optimal rotation of the neck and robot-body. Variable resolution targeting is also applied for accurate aiming. Using these two approaches, we can achieve efficient targeting with low energy consumption. Particle filter algorithm is further utilized for real-time tracking.

Findings

In the proposed approach, swift and accurate positioning and tracking of the target can be obtained. The rationality of the approach is verified by experiments on flat and sandy terrains with satisfactory results.

Originality/value

This paper proposes a novel control approach for wheeled mobile robots, which achieves coordinated movement of the robot-body and CIBNCVS with neck concerning time and energy saving in the process of swift and accurate tracking.

Details

Industrial Robot: An International Journal, vol. 41 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Access Restricted. View access options
Article
Publication date: 8 August 2024

Wei Suo, Xuxiang Sun, Weiwei Zhang and Xian Yi

The purpose of this study is to establish a novel airfoil icing prediction model using deep learning with geometrical constraints, called geometrical constraints enhancement…

124

Abstract

Purpose

The purpose of this study is to establish a novel airfoil icing prediction model using deep learning with geometrical constraints, called geometrical constraints enhancement neural networks, to improve the prediction accuracy compared to the non-geometrical constraints model.

Design/methodology/approach

The model is developed with flight velocity, ambient temperature, liquid water content, median volumetric diameter and icing time taken as inputs and icing thickness given as outputs. To enhance the icing prediction accuracy, the model involves geometrical constraints into the loss function. Then the model is trained according to icing samples of 2D NACA0012 airfoil acquired by numerical simulation.

Findings

The results show that the involvement of geometrical constraints effectively enhances the prediction accuracy of ice shape, by weakening the appearance of fluctuation features. After training, the airfoil icing prediction model can be used for quickly predicting airfoil icing.

Originality/value

This work involves geometrical constraints in airfoil icing prediction model. The proposed model has reasonable capability in the fast assessment of aircraft icing.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 5 of 5
Per page
102050