Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 22 January 2020

Jiangtao Xu, Na Luo, Shaojie Liu, Baoshan Zhao, Fang Qi, Yinjun Lian and Litong Wang

The purpose of this paper is to design a component synthesis method to suppress the vibration of the flexible spacecraft, which has the constant amplitude force/moment actuator.

170

Abstract

Purpose

The purpose of this paper is to design a component synthesis method to suppress the vibration of the flexible spacecraft, which has the constant amplitude force/moment actuator.

Design/methodology/approach

The authors proposed a method to construct constant amplitude of time delay and composite coefficient sequences based on the principles of the component synthesis vibration suppression (CSVS). The associated design strategy of the CSVS torque control is also developed. The dynamic model consisting of a single axis rotating rigid central body and a fixed flexibility panel is used to validate the proposed method. Constraint modal and free modal method are both tested to analyse the natural frequencies of the panel and dynamic properties of rigid–flexible decoupling system, under the conditions of known and unknown frequencies. The feasibility of constructing CSVS control force based on the constraint modal frequency is also analysed.

Findings

The proposed method can suppress multistage vibration and has arbitrary order robustness for each order frequencies simultaneously. Simulation results show that only the duration time of the actuator has to be set for the proposed method, reasonable vibration suppression effect can be achieved.

Practical implications

The method can be used in spacecraft, especially flexible spacecraft to suppress the vibration; the approach is convenient for engineering application and can be easily designed.

Originality/value

The authors proposed a method to construct constant amplitude of time delay and composite coefficient sequences based on the principles of the CSVS.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 1 of 1
Per page
102050