Wencheng Su, Zhangping Lu, Yinglin Sun and Guifeng Liu
Wayfinding efficiency is an extremely influential factor to improve users' library interior experience. However, few research has studied the different functions of various…
Abstract
Purpose
Wayfinding efficiency is an extremely influential factor to improve users' library interior experience. However, few research has studied the different functions of various wayfinding signages for university library users through mobile visual experiment. To fill this gap, the purpose of this paper is to explore the relationship between university library signage system design and patrons' wayfinding behavior features.
Design/methodology/approach
In this article, an eye movement tracking method was introduced to record eye movement data during the wayfinding process of participants in the library interior, targeting the cognition and psychology of library users in the wayfinding signage system. The visual guiding usability of landmarks, informational signages and directional signages were quantitatively tested, and the fixation on the signage system between orientation strategy users and route strategy users was compared. This study also investigated the effects of library users' spatial anxiety and environmental familiarity on their fixation on the area of interest of the wayfinding signage system using the differential test and regression.
Findings
This paper observed that informational signage had the best visual navigating competence. The difference of fixation duration and searching duration between patrons used various wayfinding strategies was significant. The informational signage was most attended by the route strategy users, and the orientation strategy users rarely focused on the directional signage. And participants with high anxiety tended to ignore the visually auxiliary function of the landmarks but paid attention to the directional signage. The participants with low anxiety could capture the landmarks that could not be easily found by the route strategy users. And participants less familiar with the environment were more sensitive to the landmarks. Furthermore, this paper offers optimization measures for university library wayfinding signage system, from the perspectives of informational signage understandability improvement, directional signage physical specification design and wayfinding assistant system with automatic landmark technology.
Originality/value
This article adds to the relatively sparse literature on university library user wayfinding experimental study in China. The experimental findings of this paper also have important practical implications for academic libraries' wayfinding system evaluation. The whole process could be seen as a repeatable and standard framework and methodology to inspect university library's wayfinding signage system usability and user wayfinding behavior performance.
Details
Keywords
Kaisheng Zeng, Xiaohui Luo and Yinglin Liu
The purposes of this paper are to find out the correlations between the changes of food companies’ environments and the strategic reactions of food companies after the media…
Abstract
Purpose
The purposes of this paper are to find out the correlations between the changes of food companies’ environments and the strategic reactions of food companies after the media disclosed that there were food safety incidents out there in the food markets.
Design/methodology/approach
This paper uses a randomly sampling survey of 139 food enterprises in China. After statistical significance and statistical power were examined, canonical correlation analysis was used as the main data analysis technique of this research.
Findings
Based on the environment-strategy paradigm, the authors found that the changes of the competition environment, resource environment, and institution environment in the food industry have significant association with food companies’ strategic reactions such as public relations, networking with firms and futurity after food safety incidents in the food market were disclosed.
Originality/value
The paper is the first to quantitatively examine the relationships between the changes of food companies’ environments and the strategic reactions of food companies after the media disclosed that there were food safety incidents in the food markets. The findings of this paper send novel and important messages to government decision makers and the public, evidencing how food companies strategically respond to external environmental changes, and suggesting that the institution-builder as well as the media have more work to do in the aftermath of food safety incidents.
Details
Keywords
Hua Liu, Weidong Zhu, Huiyue Dong and Yinglin Ke
To gain accurate support for large aircraft structures by ball joints in aircraft digital assembly, this paper aims to propose a novel approach based on visual servoing such that…
Abstract
Purpose
To gain accurate support for large aircraft structures by ball joints in aircraft digital assembly, this paper aims to propose a novel approach based on visual servoing such that the positioner’s ball-socket can automatically and adaptively approach the ball-head fixed on the aircraft structures.
Design/methodology/approach
Image moments of circular marker labeled on the ball-head are selected as visual features to control the three translational degrees of freedom (DOFs) of the positioner, where the composite Jacobian matrix is full rank. Kalman–Bucy filter is adopted for its online estimation, which makes the control scheme more flexible without system calibration. A combination of proportional control with sliding mode control is proposed to improve the system stability and compensate uncertainties of the system.
Findings
The ball-socket can accurately and smoothly reach its desired position in a finite time (50 s). Positional deviations between the spherical centers of ball-head and ball-socket in the X-Y plane can be controlled within 0.05 mm which meets the design requirement.
Practical implications
The proposed approach has been integrated into the pose alignment system. It has shown great potential to be widely applied in the leading support for large aircraft structures in aircraft digital assembly.
Originality/value
An adaptive approach for accurate support of large aircraft structures is proposed, which possesses characteristics of high precision, high efficiency and excellent stability.
Details
Keywords
Yinglin Wang, Yulong Li and Jiaxin Zhuang
In order to make the construction industry develop in the direction of greening, this paper analyzes whether the application of intelligent technology in prefabricated buildings…
Abstract
Purpose
In order to make the construction industry develop in the direction of greening, this paper analyzes whether the application of intelligent technology in prefabricated buildings can achieve carbon emission reduction, starting from the problems of weak technology and insufficient encouragement policies in the prefabricated building industry. It also designs dynamic and adjustable incentives for the smart transformation of prefabricated buildings and makes recommendations to facilitate the transformation of assembly manufacturers into “smart factories”.
Design/methodology/approach
This paper takes the intelligent technology for carbon reduction, energy efficiency and policy design in the prefabricated buildings industry as the starting point. Based on in-depth expert interviews and questionnaire survey data, a linear multiple regression model is used to establish an association network of intelligent technology in the production and transportation, construction, operation and maintenance, demolition and scrapping stages. On this basis, an evolutionary game theory is used to construct a smart transformation and carbon reduction utility game model between the government and manufacturers, and relevant suggestions for smart empowerment of green construction development technology combinations and policy settings are proposed.
Findings
An assembly manufacturing plant with smart empowerment is an important way to achieve green and sustainable development in the construction industry. Among them, BIM and IoT have made a greater impact on carbon emission reduction of prefabricated buildings in all stages of the whole life cycle. The government’s proposed energy efficiency incentives and environmental tax amount will effectively increase companies' motivation for smart transformation of prefabricated buildings. However, when the environmental tax amount is low, the government should strengthen the regulation of the industry in order to increase the speed of smart transformation of assembly manufacturers. Therefore, a reasonable setting of the environmental tax rate and energy-saving incentives and flexible adjustment of the regulatory efforts can maximize the functional utility of the government in the process of smart transformation.
Research limitations/implications
This paper focuses on the impact of intelligent technologies on the overall carbon emissions of the industry and provides an evolutionary analysis of the strategic game between the government and assembly manufacturers, the main players in the smart transformation process of prefabricated buildings. However, smart technologies for different categories of assembly manufacturing plants and strategic options for a wider range of stakeholders have not been examined in depth.
Originality/value
Different from existing research, this study focuses on exploring the strategic game between the government and assembly manufacturers in the smart transformation of prefabricated buildings. It provides an innovative explanation of the connection between intelligent technology and carbon emissions. The study develops an evolutionary game model for both parties, addressing the research gap on the combined effects of policy incentives and intelligent technology on carbon reduction and efficiency improvement in the prefabricated buildings industry. This research not only offers practical reference for the government in designing incentive mechanisms and establishing regulatory systems but also provides feasible practical guidance for the smart transformation and carbon reduction efforts of assembly manufacturing plants.
Details
Keywords
Siming Cao, Hongfeng Wang, Yingjie Guo, Weidong Zhu and Yinglin Ke
In a dual-robot system, the relative position error is a superposition of errors from each mono-robot, resulting in deteriorated coordination accuracy. This study aims to enhance…
Abstract
Purpose
In a dual-robot system, the relative position error is a superposition of errors from each mono-robot, resulting in deteriorated coordination accuracy. This study aims to enhance relative accuracy of the dual-robot system through direct compensation of relative errors. To achieve this, a novel calibration-driven transfer learning method is proposed for relative error prediction in dual-robot systems.
Design/methodology/approach
A novel local product of exponential (POE) model with minimal parameters is proposed for error modeling. And a two-step method is presented to identify both geometric and nongeometric parameters for the mono-robots. Using the identified parameters, two calibrated models are established and combined as one dual-robot model, generating error data between the nominal and calibrated models’ outputs. Subsequently, the calibration-driven transfer, involving pretraining a neural network with sufficient generated error data and fine-tuning with a small measured data set, is introduced, enabling knowledge transfer and thereby obtaining a high-precision relative error predictor.
Findings
Experimental validation is conducted, and the results demonstrate that the proposed method has reduced the maximum and average relative errors by 45.1% and 30.6% compared with the calibrated model, yielding the values of 0.594 mm and 0.255 mm, respectively.
Originality/value
First, the proposed calibration-driven transfer method innovatively adopts the calibrated model as a data generator to address the issue of real data scarcity. It achieves high-accuracy relative error prediction with only a small measured data set, significantly enhancing error compensation efficiency. Second, the proposed local POE model achieves model minimality without the need for complex redundant parameter partitioning operations, ensuring stability and robustness in parameter identification.
Details
Keywords
Qing Wang, Yadong Dou, Liang Cheng and Yinglin Ke
This paper aims to provide a shimming method based on scanned data and finite element analysis (FEA) for a wing box assembly involving non-uniform gaps. The effort of the present…
Abstract
Purpose
This paper aims to provide a shimming method based on scanned data and finite element analysis (FEA) for a wing box assembly involving non-uniform gaps. The effort of the present work is to deal with gap compensation problem using hybrid shims composed of solid and liquid forms.
Design/methodology/approach
First, the assembly gaps of the mating components are calculated based on the scanned surfaces. The local gap region is extracted by the seed point and region growth algorithm from the scattered point cloud. Second, with the constraints of hole margin, gap space and shim specification, the optional shimming schemes are designed by the exhaustive searching method. Finally, the three-dimensional model of the real component is reconstructed based on the reverse engineering techniques, such as section lines and sweeping. Using FEA software ABAQUS, the stress distribution and damage status of the joints under tensile load are obtained for optimal scheme selection.
Findings
With the scanned mating surfaces, the non-uniform gaps are digitally evaluated with accurate measurement and good visualization. By filling the hybrid shims in the assembly gaps, the joint structures possess similar load capacity but stronger initial stiffness compared to the custom-shimmed structures.
Practical implications
This method has been tested with the interface data of a wing tip, and the results have shown good efficiency and automation of the shimming process.
Originality/value
The proposed method can decrease the manufacturing cost of shims, shorten the shimming process cycle and improve the assembly efficiency.
Details
Keywords
Yifan Zhang, Qing Wang, Anan Zhao and Yinglin Ke
This paper aims to improve the alignment accuracy of large components in aircraft assembly and an evaluation algorithm, which is based on manufacture accuracy and coordination…
Abstract
Purpose
This paper aims to improve the alignment accuracy of large components in aircraft assembly and an evaluation algorithm, which is based on manufacture accuracy and coordination accuracy, is proposed.
Design/methodology/approach
With relative deviations of manufacturing feature points and coordinate feature points, an evaluation function of assembly error is constructed. Then the optimization model of large aircraft digital alignment is established to minimize the synthesis assembly error with tolerance requirements, which consist of three-dimensional (3D) tolerance of manufacturing feature points and relative tolerance between coordination feature points. The non-linear constrained optimization problem is solved by Lagrange multiplier method and quasi-Newton method with its initial value provided by the singular value decomposition method.
Findings
The optimized postures of large components are obtained, which makes the tolerance of both manufacturing and coordination requirements be met. Concurrently, the synthesis assembly error is minimized. Compared to the result of the singular value decomposition method, the algorithm is validated in three typical cases with practical data.
Practical implications
The proposed method has been used in several aircraft assembly projects and gained a good effect.
Originality/value
This paper proposes a method to optimize the manufacturing and coordination accuracy with tolerance constraints when the postures of several components are adjusted at the same time. The results of this paper will help to improve the quality of component assemblies.
Details
Keywords
Sifeng Liu, Yong Tao, Naiming Xie, Liangyan Tao and Mingli Hu
The purpose of this paper is to summarize the advances in grey system theory research and various application achievements in science and engineering. At the same time, it…
Abstract
Purpose
The purpose of this paper is to summarize the advances in grey system theory research and various application achievements in science and engineering. At the same time, it commemorates the 40th anniversary of the birth of grey system theory and the 10th anniversary of Grey Systems–Theory and Application.
Design/methodology/approach
Firstly, the innovations of theoretical research in grey system theory were summarized and some of the widely recognized new results are briefly described. By searching and combing the research results of grey system theory in China national knowledge infrastructure (CNKI) database and Web of Science by Institute for Scientific Information (ISI), this paper shows the rapid development trend of grey system theory in the past 40 years, and the successful applications of grey system theory in the fields of social sciences, natural sciences and engineering technologies.
Findings
More than 227 thousands literature were found by input 10 phrases such as grey system, grey number and sequence operator etc. in CNKI database. After entering the new century, the number of grey system papers included in CNKI database is increasing rapidly. Since 2008, more than 10 thousands papers have been included per year and more than 15 thousands papers have been included per year since 2014. Grey system method and model are widely used in physics, chemistry, biology and other fields of natural science, as well as transportation, electric power, machinery and other fields of engineering technology, and a large number of valuable results have been achieved.
Practical implications
It can be seen that the grey system theory plays an important role in promoting China’s scientific and technological progress, innovation and development and high-level talent training from tens of thousands of literatures marked with important national science and technology projects and a large number of grey system literatures published by China’s double first-class universities and double first-class discipline construction universities.
Originality/value
Both innovations of theoretical research and practical application play important role in the growth of new theory. The innovations of theoretical research provide methods and tools for practical application, which is conducive to improve application efficiency and broaden application fields. A large number of practical applications needs have become the source of theoretical innovation and the solid background for the birth of theoretical innovation achievements.
Details
Keywords
Qing Wang, Peng Huang, Jiangxiong Li and Yinglin Ke
The purpose of this paper is to increase the measurement accuracy of assembly deviations of an inertial navigation system, a new evaluation and optimal method of assembly…
Abstract
Purpose
The purpose of this paper is to increase the measurement accuracy of assembly deviations of an inertial navigation system, a new evaluation and optimal method of assembly metrology system is proposed, which takes into account the uncertainty from laser tracker hardware and coordinate system transformation, and is based on the Monte Carlo method.
Design/methodology/approach
The uncertainty model of the laser tracker is established and its parameters are obtained from the known repeated test data by kriging interpolation and the least squares method. The errors of coordinate transformation are reduced by using a weighted point matching method, and the uncertainty of the transformation parameters is obtained based on the generalized inverse theory. The weighting coefficients of each reference point are optimized by the particle swarm optimization method according to the assembly requirements.
Findings
The experiment results show that measurement error and predicted results match well, and the assembly deviation uncertainty of large component is reduced by about 10 per cent compared with the singular value decomposition method.
Originality/value
This paper proposes a method to evaluate and eliminate the influence of random errors of the laser tracker during evaluation process of coordinate translation parameters and assembly deviations. The proposed method would be useful to improve the assembly measurement accuracy through less measurement times.
Details
Keywords
Liang Cheng, Qing Wang, Jiangxiong Li and Yinglin Ke
– The purpose of this paper is to propose a posture evaluation approach based on temperature compensation and three-dimensional (3-D) tolerance for the key points (KPs).
Abstract
Purpose
The purpose of this paper is to propose a posture evaluation approach based on temperature compensation and three-dimensional (3-D) tolerance for the key points (KPs).
Design/methodology/approach
A large component 3-D compensation model of thermal deformation considering characteristics of the assembly object is developed. Then, the thermal deformation compensation model is used to modify the nominal coordinates for the KPs. By using a combination of relative deviations of KPs as the objective and 3-D tolerance as the constraints, an optimization model for posture evaluation is established.
Findings
Deviations of posture and KPs’ coordinates are obtained by solving the non-linear constrained optimization problem. The posture evaluation method is demonstrated in both a simulation case and practical implication of the aircraft components assembly system with the result that a good performance is obtained.
Practical implications
The proposed method has been used in several aircraft assembly projects in China, and gained a good effect.
Originality/value
This paper proposes a method for eliminating the affection of thermal deformation during posture evaluation process and improving the consistency and stability of posture evaluation results. The results of this research will help to systematically improve the manufacturing process and tolerance allocation efficiency in large aircraft assembly.