Search results
1 – 4 of 4Miaomiao Li, Yinglin Qin and Jiaqi Le
This study investigates how downward envy affects interpersonal conflict, workplace ostracism and displaced aggression in the mentoring context. It seeks to deepen our…
Abstract
Purpose
This study investigates how downward envy affects interpersonal conflict, workplace ostracism and displaced aggression in the mentoring context. It seeks to deepen our understanding of how these dynamics influence a mentor–protégé relationship.
Design/methodology/approach
Employing a three-wave research design, this study uses a sample of 176 participants in mentoring relationships to test our proposed moderated mediation model.
Findings
Downward envy can increase interpersonal conflict, workplace ostracism and displaced aggression. A mentor’s social comparison orientation moderates these effects by amplifying the negative impacts of downward envy.
Research limitations/implications
These findings have practical implications for both mentors and protégés.
Practical implications
These findings have practical implications for both mentors and protégés.
Originality/value
This study contributes to the literature by focusing on downward envy within the mentoring context, yielding valuable insights to navigate mentoring experiences at work.
Details
Keywords
Yunbo Bi, Weimiao Yan and Yinglin Ke
The deformation of a large fuselage panel is unavoidable due to its weak-stiffness and low-rigidity. Sometimes, the assembly accuracy of the panel is out of tolerance. The purpose…
Abstract
Purpose
The deformation of a large fuselage panel is unavoidable due to its weak-stiffness and low-rigidity. Sometimes, the assembly accuracy of the panel is out of tolerance. The purpose of this paper is to propose a method to predict and correct the assembly deformation of a large fuselage panel during digital assembly by using a finite element (FE) analysis and partial least squares regression (PLSR) method.
Design/methodology/approach
A FE model is proposed to optimize the layout of load-transmitting devices to reduce panel deformation after the process of hoisting and supporting. Furthermore, another FE model is established to investigate the deformation behavior of the panel. By orthogonal simulations, the position error data of measurement points representing the precision of the panel are obtained. Then, a mathematical model of the relationship between the position errors of measurement points on the panel and the displacements of numerical control positioners is developed based on the PLSR method.
Findings
The case study shows that the model has a high level of computing accuracy and that the proposed method is an efficient way to correct the panel deformation in digital assembly.
Originality/value
The results of this study will enhance the understanding of the deformation behavior of a panel in aircraft digital assembly and help to improve the assembly precision systematically and efficiently.
Details
Keywords
Dan Zhao, Yunbo Bi and Yinglin Ke
This paper aims to propose a united kinematic calibration method for a dual-machine system in automatic drilling and riveting. The method takes both absolute and relative pose…
Abstract
Purpose
This paper aims to propose a united kinematic calibration method for a dual-machine system in automatic drilling and riveting. The method takes both absolute and relative pose accuracy into account, which will largely influence the machining accuracy of the dual-machine system and assembly quality.
Design/methodology/approach
A comprehensive kinematic model of the dual-machine system is established by the superposition of sub-models with pose constraints, which involves base frame parameters, kinematic parameters and tool frame parameters. Based on the kinematic model and the actual pose error data measured by a laser tracker, the parameters of coordinated machines are identified by the Levenberg–Marquardt method as a multi-objective nonlinear optimization problem. The identified parameters of the coordinated machines will be used in the control system.
Findings
A new calibration method for the dual-machine system is developed, including a comprehensive kinematic model and an efficient parameter identification method. The experiment results show that with the proposed method, the pose accuracy of the dual-machine system was remarkably improved, especially the relative position and orientation errors.
Practical implications
This method has been used in an aircraft assembly project. The calibrated dual-machine system shows a good performance on system coordination and machining accuracy.
Originality/value
This paper proposes a new method with high accuracy and efficiency for the dual-machine system calibration. The research can be extended to multi-machine and multi-robot fields to improve the system precision.
Details
Keywords
Sifeng Liu, Yong Tao, Naiming Xie, Liangyan Tao and Mingli Hu
The purpose of this paper is to summarize the advances in grey system theory research and various application achievements in science and engineering. At the same time, it…
Abstract
Purpose
The purpose of this paper is to summarize the advances in grey system theory research and various application achievements in science and engineering. At the same time, it commemorates the 40th anniversary of the birth of grey system theory and the 10th anniversary of Grey Systems–Theory and Application.
Design/methodology/approach
Firstly, the innovations of theoretical research in grey system theory were summarized and some of the widely recognized new results are briefly described. By searching and combing the research results of grey system theory in China national knowledge infrastructure (CNKI) database and Web of Science by Institute for Scientific Information (ISI), this paper shows the rapid development trend of grey system theory in the past 40 years, and the successful applications of grey system theory in the fields of social sciences, natural sciences and engineering technologies.
Findings
More than 227 thousands literature were found by input 10 phrases such as grey system, grey number and sequence operator etc. in CNKI database. After entering the new century, the number of grey system papers included in CNKI database is increasing rapidly. Since 2008, more than 10 thousands papers have been included per year and more than 15 thousands papers have been included per year since 2014. Grey system method and model are widely used in physics, chemistry, biology and other fields of natural science, as well as transportation, electric power, machinery and other fields of engineering technology, and a large number of valuable results have been achieved.
Practical implications
It can be seen that the grey system theory plays an important role in promoting China’s scientific and technological progress, innovation and development and high-level talent training from tens of thousands of literatures marked with important national science and technology projects and a large number of grey system literatures published by China’s double first-class universities and double first-class discipline construction universities.
Originality/value
Both innovations of theoretical research and practical application play important role in the growth of new theory. The innovations of theoretical research provide methods and tools for practical application, which is conducive to improve application efficiency and broaden application fields. A large number of practical applications needs have become the source of theoretical innovation and the solid background for the birth of theoretical innovation achievements.
Details