Search results

1 – 10 of 20
Article
Publication date: 11 June 2019

Yawei Xu, Lihong Dong, Haidou Wang, Yuelan Di, Xiaozhu Xie, Peng Wang and Miao Zhang

Crack sensor based on RFID tag has become a research hotspot in the field of metal structural health monitoring for its significant benefit of passive wireless transmission. While…

Abstract

Purpose

Crack sensor based on RFID tag has become a research hotspot in the field of metal structural health monitoring for its significant benefit of passive wireless transmission. While in practice, crack location will impact the performance of crack depth-sensing tag. The purpose of this paper is to provide a method for reducing disturbance of crack location on crack depth-sensing tag.

Design/methodology/approach

The effect analysis of crack location on crack depth-sensing tag is presented first to find disturbance reason and disturbance law. On the basis of that, a miniaturized tag is proposed to improve the current distribution and reduce the disturbance introduced by crack location.

Findings

The degree of crack location disturbance is closely related to the current distribution in the coverage area of tag. Because sensing tag performs better when crack locates in the high current density area, miniaturization of sensing tag is exploited to expand the high current density area and make the area more symmetrical. The simulated and experimental results demonstrate that tag miniaturization can enhance the performance of crack depth-sensing tag.

Originality/value

This paper provides a method to enhance the performance of crack depth-sensing tag.

Details

Sensor Review, vol. 39 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 30 January 2020

Yawei Xu, Lihong Dong, Haidou Wang, Xiaozhu Xie and Peng Wang

RFID tags for sensing are available to operate and transmit sensing data to measurement equipment without battery and wires, which is a great advantage in establishing IoT…

Abstract

Purpose

RFID tags for sensing are available to operate and transmit sensing data to measurement equipment without battery and wires, which is a great advantage in establishing IoT environment. For crack sensing tags, however, the short service life of tags restricted their application. This paper aims to introduce a method of surface crack detection and monitoring based on RFID tag, which makes it possible for tags to be reused.

Design/methodology/approach

Metal plate to be monitored, acting as the ground plane of microstrip patch antenna, is underneath the crack sensing tag. The propagating surface crack in metal plate will change the electric length of tag’s antenna that is directly proportional to the crack depth and length. Thus, the deformation of sensing tag introduced by the load on metal structure is no longer a prerequisite for crack sensing.

Findings

The simulated and experimental results show that the proposed crack sensing tag can sense the change of surface crack with mm-resolution and sense surface crack propagation without a deformation, which means the proposed crack sensing tag can be reused.

Originality/value

The key advantage of the proposed method is the reusability of the RFID tags.

Details

Sensor Review, vol. 40 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 June 2017

Yawei Xu, Lihong Dong, Haidou Wang, Jiannong Jing and Yongxiang Lu

Radio frequency identification tags for passive sensing have attracted wide attention in the area of Internet of Things (IoT). Among them, some tags can sense the property change…

Abstract

Purpose

Radio frequency identification tags for passive sensing have attracted wide attention in the area of Internet of Things (IoT). Among them, some tags can sense the property change of objects without an integrated sensor, which is a new trend of passive sensing based on tag. The purpose of this paper is to review recent research on passive self-sensing tags (PSSTs).

Design/methodology/approach

The PSSTs reported in the past decade are classified in terms of sensing mode, composition and the ways of power supply. This paper presents operation principles of PSSTs and analyzes the characteristics of them. Moreover, the paper focuses on summarizing the latest sensing parameters of PSSTs and their matching equipment. Finally, some potential applications and challenges faced by this emerging technique are discussed.

Findings

PSST is suitable for long-term and large-scale monitoring compared to conventional sensors because it gets rid of the limitation of battery and has relatively low cost. Also, the static information of objects stored in different PSSTs can be identified by a single reader without touch.

Originality/value

This paper provides a detailed and timely review of the rapidly growing research in PSST.

Details

Sensor Review, vol. 37 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 11 September 2023

Yang Liu, Jialing Wang, Huayang Cai, Yawei Shao, Zhengyi Xu, Yanqiu Wang and Junyi Wang

Epoxy zinc-rich coatings are widely used in harsh environments because of the long-lasting cathodic protection of steel surfaces. The purpose of this paper is to use flake zinc…

Abstract

Purpose

Epoxy zinc-rich coatings are widely used in harsh environments because of the long-lasting cathodic protection of steel surfaces. The purpose of this paper is to use flake zinc powder instead of the commonly used spherical zinc powder to reduce the zinc powder content.

Design/methodology/approach

In this paper, the authors have prepared an anticorrosive zinc-rich coating using a flake zinc powder instead of the conventional spherical zinc powder. The optimal dispersion of scaly zinc powder in zinc-rich coatings has been explored by looking at the surface and cross-sectional morphology and studying the cathodic protection time of the coating.

Findings

The final epoxy zinc-rich coating with 35 Wt.% flake zinc powder content was prepared using sand-milling dispersions. It has a similar cathodic protection time and salt spray resistance as the 60 Wt.% spherical zinc-rich coating, with a higher low-frequency impedance modulus value.

Originality/value

This study uses flake zinc powder instead of the traditional spherical zinc powder. This reduces the amount of zinc powder in the coating and improves the corrosion resistance of the coating.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 15 September 2023

Yang Liu, Qian Zhang, Jialing Wang, Yawei Shao, Zhengyi Xu, Yanqiu Wang and Junyi Wang

The purpose of this paper is to enhance the compatibility of titanium dioxide in epoxy resins and thus the corrosion resistance of the coatings.

Abstract

Purpose

The purpose of this paper is to enhance the compatibility of titanium dioxide in epoxy resins and thus the corrosion resistance of the coatings.

Design/methodology/approach

In this work, TiO2 was modified by the mechanochemistry method where mechanical energy was combined with thermal energy to complete the modification. The stability of modified TiO2 in epoxy was analyzed by sedimentation experiment. The modified TiO2-epoxy coating was prepared, and the corrosion resistance of the coating was analyzed by open circuit potential, electrochemical impedance spectroscopy and neutral salt spray test.

Findings

High-temperature mechanical modification can improve the compatibility of TiO2 in epoxy resin. At the same time, the modified TiO2-epoxy coating showed better corrosion resistance. Compared to the unmodified TiO2-epoxy coating, the coating improved the dry adhesion force by 61.7% and the adhesion drop by 33.3%. After 2,300 h of immersion in 3.5 Wt.% NaCl solution, the coating resistance of the modified TiO2 coating was enhanced by nearly two orders of magnitude compared to the unmodified coating.

Originality/value

The authors have grafted epoxy molecules onto TiO2 surfaces using a high-temperature mechanical force modification method. The compatibility of TiO2 with epoxy resin is enhanced, resulting in improved adhesion of the coating to the substrate and corrosion resistance of the coating.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Book part
Publication date: 5 October 2018

Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…

Abstract

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Article
Publication date: 3 August 2022

Bin Zhao, Yawei Zhou, Junfeng Qu, Fei Yin, Shaoqing Yin, Yongwei Chang and Wu Zhang

Since carbon nanotubes (CNTs) were discovered by Iijima in 1991, they have gained more and more attention by people because of their unique physical and chemical properties. The…

Abstract

Purpose

Since carbon nanotubes (CNTs) were discovered by Iijima in 1991, they have gained more and more attention by people because of their unique physical and chemical properties. The CNTs have one-dimensional nanostructure, high surface adsorption capacity, good conductivity and electronic ballistic transmission characteristics and therefore have excellent mechanical, electrical, physical and chemical properties. CNTs are ideal basic materials to make nanometer gas sensors. Nanometallic materials function as to enhance electrode activity and promote the electron transfer, so if composite nanometallic materials M (such as Au, Pt, Cu and Pd) and CNTs are used, all kinds of their characters of components would have coeffect. Electrochemical sensors by use of such composite as electrode would have a higher detection sensitivity.

Design/methodology/approach

CNTs were synthesized via chemical vapor deposition technique and were purified afterward. CNTs-M(Pt,Au) suspension was prepared by chemical deposition using spinning disc processor (SDP) and was coated on gold electrode. The modified electrodes were constructed, based on immobilization of glucose oxidase on an Au electrode by electrostatic effect. CNTs-Pt/ glassy carbon electrodes (GCE) electrodes were made by electrochemically deposition of platinum particles on GCE modified by CNTs. The microstructures of the harvested CNTs, CNTs-M (M = Au, Pt) were analyzed under scanning electron microscopy and transmission electron microscopy. The application of the sensor in medical detection has been evaluated.

Findings

The results shown that CNTs-Au biosensors exhibit good reproducibility, stability and fast response to glucose detection, it can be used in the clinic detection of glucose concentration in human serum. Using CNTs-Pt/GCE for formaldehyde detection exhibited high sensitivity and good reproducibility.

Originality/value

This study modified CNTs by using self-assembled techniques through SDP with nano Pt and Au by electrodeposition for the first time. CNTs-Pt/GCE electrode was prepared by depositing platinum particles electrochemically on GCE modified by CNTs. CNTs-Au-modified electrode was prepared by immobilization of glucose oxidase on an Au electrode first by electrostatic effect. Electrochemical behaviors of glucose at CNTs-Au and formaldehyde at CNTs-Pt/GCE were investigated by cyclic voltammetry.

Details

Sensor Review, vol. 42 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 September 2024

Junqiang Su, Yawei Ren, Guoqing Jin and Nan Wang

To setup a theoretical model for grasping cutting pieces of garment better, which will help to design a special soft gripper and push forward the automated level of garment…

Abstract

Purpose

To setup a theoretical model for grasping cutting pieces of garment better, which will help to design a special soft gripper and push forward the automated level of garment manufacturing.

Design/methodology/approach

This paper first analyzed the mechanics of the grasping process and concluded the main factors that affect the success of grasping. A theoretical model named grasping fabric model (GFM) was constructed to show the mechanical relationship between the soft gripper and the fabric pieces. Subsequently, two fabric samples were selected and tested for their friction properties and critical buckling force, and the test data were substituted into the theoretical model GFM to obtain the grasping parameters required for fabric grasping layer by layer.

Findings

It was found that (1) the critical buckling force of the fabric is mainly influenced by the bending stiffness and the deformation length of the fabric during grab. (2) The difference between the friction between the soft gripper and the fabric and the friction between the fabric, that is DF1-2, has an important influence on the accuracy of grasping layer-by-layer.

Originality/value

It showed that the grasping parameters provided by GFM enable the two samples to be more effectively separated layer by layer, which verifies that the GFM model is strong enough for the possible application in garment automated production.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 9 May 2023

Yiming Li, Hongzhuan Chen, Shuo Cheng and Abdul Waheed Siyal

In order to analyze the level of independent controllability and its evolution of high-end equipment manufacturing industry from Jiangsu Province, this article introduces the…

Abstract

Purpose

In order to analyze the level of independent controllability and its evolution of high-end equipment manufacturing industry from Jiangsu Province, this article introduces the dual-excitation control line method to construct a comprehensive evaluation model for independent controllability.

Design/methodology/approach

Through the collection of information of high-end equipment manufacturing industry's independent and controllable capabilities on different indicators, the three aspects of advancement, autonomy and controllability, an empirical evaluation of 10 enterprises in the high-end equipment cluster in Jiangsu Province was conducted in terms of advancement, autonomy and controllability.

Findings

It effectively reveals the area and evolution characteristics of the “reward” and “punishment” of different indicators of each representative enterprise and reflects the development status and different characteristics of each representative enterprise on the three indicators. The research results provide decision-making guidance for enterprises in the management and control of advanced manufacturing systems with independent and controllable capabilities.

Originality/value

Existing research focuses on the evaluation of enterprises' independent controllability only on a single angle or index. This paper maps the dynamic evaluation problem of multiple time-point data to the evaluation problem of single time-point multi-index data and investigates the fluctuation of the performance of the same enterprise under different indexes, so as to comprehensively evaluate the independent controllable level of high-end equipment manufacturing industry and analyze the reasons. Further, this paper first establishes an evaluation index system of independent controllable level of high-end equipment manufacturing industry and quantitatively measures the advanced, independent, controllable and other aspects of typical enterprises in this industry by constructing a double incentive control line evaluation model.

Book part
Publication date: 24 June 2024

Yawei Jiang and Zhiming Deng

This chapter uses cognitive psychology to understand how individuals deal with negative emotions using coping strategies. It discusses the coping process and reviews three current…

Abstract

This chapter uses cognitive psychology to understand how individuals deal with negative emotions using coping strategies. It discusses the coping process and reviews three current debates about cognitive appraisal theory, coping and emotion regulation. The use of coping strategies in tourism, services and business management is presented to understand different stakeholders' responses to negative emotions. The literature discusses various elements (antecedents, coping strategies, coping consequence) for emotion coping process and the chapter summarises a synthesised conceptual framework for emotional coping based on the cognitive appraisal theory. The framework is used to examine coping in the context of COVID-19. The chapter concludes with future research opportunities in this subject area.

Details

Cognitive Psychology and Tourism
Type: Book
ISBN: 978-1-80262-579-0

Keywords

1 – 10 of 20