Search results
1 – 5 of 5Junqiang Su, Yawei Ren, Guoqing Jin and Nan Wang
To setup a theoretical model for grasping cutting pieces of garment better, which will help to design a special soft gripper and push forward the automated level of garment…
Abstract
Purpose
To setup a theoretical model for grasping cutting pieces of garment better, which will help to design a special soft gripper and push forward the automated level of garment manufacturing.
Design/methodology/approach
This paper first analyzed the mechanics of the grasping process and concluded the main factors that affect the success of grasping. A theoretical model named grasping fabric model (GFM) was constructed to show the mechanical relationship between the soft gripper and the fabric pieces. Subsequently, two fabric samples were selected and tested for their friction properties and critical buckling force, and the test data were substituted into the theoretical model GFM to obtain the grasping parameters required for fabric grasping layer by layer.
Findings
It was found that (1) the critical buckling force of the fabric is mainly influenced by the bending stiffness and the deformation length of the fabric during grab. (2) The difference between the friction between the soft gripper and the fabric and the friction between the fabric, that is DF1-2, has an important influence on the accuracy of grasping layer-by-layer.
Originality/value
It showed that the grasping parameters provided by GFM enable the two samples to be more effectively separated layer by layer, which verifies that the GFM model is strong enough for the possible application in garment automated production.
Details
Keywords
Yang Liu, Jialing Wang, Huayang Cai, Yawei Shao, Zhengyi Xu, Yanqiu Wang and Junyi Wang
Epoxy zinc-rich coatings are widely used in harsh environments because of the long-lasting cathodic protection of steel surfaces. The purpose of this paper is to use flake zinc…
Abstract
Purpose
Epoxy zinc-rich coatings are widely used in harsh environments because of the long-lasting cathodic protection of steel surfaces. The purpose of this paper is to use flake zinc powder instead of the commonly used spherical zinc powder to reduce the zinc powder content.
Design/methodology/approach
In this paper, the authors have prepared an anticorrosive zinc-rich coating using a flake zinc powder instead of the conventional spherical zinc powder. The optimal dispersion of scaly zinc powder in zinc-rich coatings has been explored by looking at the surface and cross-sectional morphology and studying the cathodic protection time of the coating.
Findings
The final epoxy zinc-rich coating with 35 Wt.% flake zinc powder content was prepared using sand-milling dispersions. It has a similar cathodic protection time and salt spray resistance as the 60 Wt.% spherical zinc-rich coating, with a higher low-frequency impedance modulus value.
Originality/value
This study uses flake zinc powder instead of the traditional spherical zinc powder. This reduces the amount of zinc powder in the coating and improves the corrosion resistance of the coating.
Details
Keywords
Yawei Xu, Lihong Dong, Haidou Wang, Yuelan Di, Xiaozhu Xie, Peng Wang and Miao Zhang
Crack sensor based on RFID tag has become a research hotspot in the field of metal structural health monitoring for its significant benefit of passive wireless transmission. While…
Abstract
Purpose
Crack sensor based on RFID tag has become a research hotspot in the field of metal structural health monitoring for its significant benefit of passive wireless transmission. While in practice, crack location will impact the performance of crack depth-sensing tag. The purpose of this paper is to provide a method for reducing disturbance of crack location on crack depth-sensing tag.
Design/methodology/approach
The effect analysis of crack location on crack depth-sensing tag is presented first to find disturbance reason and disturbance law. On the basis of that, a miniaturized tag is proposed to improve the current distribution and reduce the disturbance introduced by crack location.
Findings
The degree of crack location disturbance is closely related to the current distribution in the coverage area of tag. Because sensing tag performs better when crack locates in the high current density area, miniaturization of sensing tag is exploited to expand the high current density area and make the area more symmetrical. The simulated and experimental results demonstrate that tag miniaturization can enhance the performance of crack depth-sensing tag.
Originality/value
This paper provides a method to enhance the performance of crack depth-sensing tag.
Details
Keywords
Yingjun Zhang, Baojie Dou, Yawei Shao, Xue-Jun Cui, Yanqiu Wang, Guozhe Meng and Xiu-Zhou Lin
This paper aim to investigate the influence of PA on the corrosion behavior of carbon steel with blast cleaned or pre-rusted treatments, and interpret the inhibition mechanism of…
Abstract
Purpose
This paper aim to investigate the influence of PA on the corrosion behavior of carbon steel with blast cleaned or pre-rusted treatments, and interpret the inhibition mechanism of PA on the steel with different surface treatments.
Design/methodology/approach
The influence of PA on the corrosion behavior of blast cleaned or rusty steel was investigated by means of electrochemical impedance spectroscopy (EIS). The EIS data were analyzed using the @ZsimpWin commercial software. The morphology and component of steel after immersion were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), Fourier transformation infrared (FTIR) and X-ray diffractometer (XRD).
Findings
EIS analysis results indicated that PA had good corrosion inhibition for blast cleaned or rusty steel. SEM, EDS, FTIR and XRD further indicated that PA had two main corrosion inhibition processes for the corrosion inhibition of blast cleaned or rusty steel: corrosion dissolution and formation of protective barrier layers.
Originality/value
Most published works focus the attention only toward the effect of corrosion inhibitor for the clean metal surfaces. However, the surface condition of metal sometimes is unsatisfactory in the practical application of corrosion inhibitor, such as existing residual rust. Some studies also have shown that several corrosion inhibitors could be applied on partially rusted substrates. These inhibitors mainly include tannins and phosphoric acid, but not PA. Therefore, the authors investigated the influence of PA on the corrosion behavior of carbon steel with blast cleaned or pre-rusted treatments in this paper.
Details
Keywords
Madhup Kumar and A. Roy Choudhury
In adaptive slicing, the number of layers is drastically reduced by using sloping layer walls. For both vertical (2.5D slices) and sloping (ruled slices) outer walls, the…
Abstract
In adaptive slicing, the number of layers is drastically reduced by using sloping layer walls. For both vertical (2.5D slices) and sloping (ruled slices) outer walls, the strategies for determining slice height generally consider a number of vertical sections along the contour of a slice. Surface deviation error is calculated at these sections and slice height subsequently determined. Instead, a method is proposed which calculates error at every part of the surface. This method approximates the outer wall between two successive contours by a series of taut cubic spline patches. It is proposed that the deviation between such a patch and the actual surface is a better and more exhaustive estimate of surface error. Results show that the predicted number of slices is slightly higher than that predicted by existing methods for sloping layer walls.
Details