Search results

1 – 2 of 2
Article
Publication date: 14 June 2024

Yaser Sadati-Keneti, Mohammad Vahid Sebt, Reza Tavakkoli-Moghaddam, Armand Baboli and Misagh Rahbari

Although the previous generations of the Industrial Revolution have brought many advantages to human life, scientists have been looking for a substantial breakthrough in creating…

Abstract

Purpose

Although the previous generations of the Industrial Revolution have brought many advantages to human life, scientists have been looking for a substantial breakthrough in creating technologies that can improve the quality of human life. Nowadays, we can make our factories smarter using new concepts and tools like real-time self-optimization. This study aims to take a step towards implementing key features of smart manufacturing including  preventive self-maintenance, self-scheduling and real-time decision-making.

Design/methodology/approach

A new bi-objective mathematical model based on Industry 4.0 to schedule received customer orders, which minimizes both the total earliness and tardiness of orders and the probability of machine failure in smart manufacturing, was presented. Moreover, four meta-heuristics, namely, the multi-objective Archimedes optimization algorithm (MOAOA), NSGA-III, multi-objective simulated annealing (MOSA) and hybrid multi-objective Archimedes optimization algorithm and non-dominated sorting genetic algorithm-III (HMOAOANSGA-III) were implemented to solve the problem. To compare the performance of meta-heuristics, some examples and metrics were presumed and solved by using the algorithms, and the performance and validation of meta-heuristics were analyzed.

Findings

The results of the procedure and a mathematical model based on Industry 4.0 policies showed that a machine performed the self-optimizing process of production scheduling and followed a preventive self-maintenance policy in real-time situations. The results of TOPSIS showed that the performances of the HMOAOANSGA-III were better in most problems. Moreover, the performance of the MOSA outweighed the performance of the MOAOA, NSGA-III and HMOAOANSGA-III if we only considered the computational times of algorithms. However, the convergence of solutions associated with the MOAOA and HMOAOANSGA-III was better than those of the NSGA-III and MOSA.

Originality/value

In this study, a scheduling model considering a kind of Industry 4.0 policy was defined, and a novel approach was presented, thereby performing the preventive self-maintenance and self-scheduling by every single machine. This new approach was introduced to integrate the order scheduling system using a real-time decision-making method. A new multi-objective meta-heuristic algorithm, namely, HMOAOANSGA-III, was proposed. Moreover, the crowding-distance-quality-based approach was presented to identify the best solution from the frontier, and in addition to improving the crowding-distance approach, the quality of the solutions was also considered.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 24 April 2023

Misagh Rahbari, Alireza Arshadi Khamseh and Yaser Sadati-Keneti

The Russia–Ukraine war has disrupted the wheat supply worldwide. Given that wheat is one of the most important agri-food products in the world, it is necessary to pay attention to…

Abstract

Purpose

The Russia–Ukraine war has disrupted the wheat supply worldwide. Given that wheat is one of the most important agri-food products in the world, it is necessary to pay attention to the wheat supply chain during the global crises. The use of resilience strategies is one of the solutions to face the supply chain disruptions. In addition, there is a possibility of multiple crises occurring in global societies simultaneously.

Design/methodology/approach

In this research, the resilience strategies of backup suppliers (BS) and inventory pre-prepositioning (IP) were discussed in order to cope with the wheat supply chain disruptions. Furthermore, the p-Robust Scenario-based Stochastic Programming (PRSSP) approach was used to optimize the wheat supply chain under conditions of disruptions from two perspectives, feasibility and optimality.

Findings

After implementing the problem of a real case in Iran, the results showed that the use of resilience strategy reduced costs by 9.33%. It was also found that if resilience strategies were used, system's flexibility and decision-making power increased. Besides, the results indicated that if resilience strategies were used and another crisis like the COVID-19 pandemic occurred, supply chain costs would increase less than when resilience strategies were not used.

Originality/value

In this study, the design of the wheat supply chain was discussed according to the wheat supply disruptions due to the Russia–Ukraine war and its implementation on a real case. In the following, various resilience strategies were used to cope with the wheat supply chain disruptions. Finally, the effect of the COVID-19 pandemic on the wheat supply chain in the conditions of disruptions caused by the Russia–Ukraine war was investigated.

1 – 2 of 2