Gonggui Chen, Lilan Liu, Yanyan Guo and Shanwai Huang
For one thing, despite the fact that it is popular to research the minimization of the power losses in power systems, the optimization of single objective seems insufficient to…
Abstract
Purpose
For one thing, despite the fact that it is popular to research the minimization of the power losses in power systems, the optimization of single objective seems insufficient to fully improve the performance of power systems. Multi-objective VAR Dispatch (MVARD) generally minimizes two objectives simultaneously: power losses and voltage deviation. The purpose of this paper is to propose Multi-Objective Enhanced PSO (MOEPSO) algorithm that achieves a good performance when applied to solve MVARD problem. Thus, the new algorithm is worthwhile to be known by the public.
Design/methodology/approach
Motivated by differential evolution algorithm, cross-over operator is introduced to increase particle diversity and reinforce global searching capacity in conventional PSO. In addition to that, a constraint-handling approach considering Constrain-prior Pareto-Dominance (CPD) is presented to handle the inequality constraints on dependent variables. Constrain-prior Nondominated Sorting (CNS) and crowding distance methods are considered to maintain well-distributed Pareto optimal solutions. The method combining CPD approach, CNS technique, and cross-over operator is called the MOEPSO method.
Findings
The IEEE 30 node and IEEE 57 node on power systems have been used to examine and test the presented method. The simulation results show the MOEPSO method can achieve lower power losses, smaller voltage deviation, and better-distributed Pareto optimal solutions comparing with the Multi-Objective PSO approach.
Originality/value
The most original parts include: the presented MOEPSO algorithm, the CPD approach that is used to handle constraints on dependent variables, and the CNS method which is considered to maintain a well-distributed Pareto optimal solutions. The performance of the proposed algorithm successfully reflects the value of this paper.
Details
Keywords
Yuanyuan Chen, Xiufeng He, Jia Xu, Lin Guo, Yanyan Lu and Rongchun Zhang
As one of the world's most productive ecosystems, ecological land plays an important role in regional and global environments. Utilizing advanced optical and synthetic aperture…
Abstract
Purpose
As one of the world's most productive ecosystems, ecological land plays an important role in regional and global environments. Utilizing advanced optical and synthetic aperture radar (SAR) data for land cover/land use research becomes increasingly popular. This research aims to investigate the complementarity of fully polarimetric SAR and optical imaging for ecological land classification in the eastern coastal area of China.
Design/methodology/approach
Four polarimetric decomposition methods, namely, H/Alpha, Yamaguchi3, VanZyl3 and Krogager, were applied to Advanced Land Observing Satellite (ALOS) SAR image for scattering parameter extraction. These parameters were merged with ALOS optical parameters for subsequent classification using the object-based quick, unbiased, efficient statistical tree decision tree method.
Findings
The experimental results indicate that an improved classification performance was obtained in the decision level when merging the two data sources. In fact, unlike classification using only optical images, the proposed approach allowed to distinguish ecological land with similar spectrum but different scattering. Moreover, unlike classification using only polarimetric information, the integration of polarimetric and optical data allows to accurately distinguish reed from artemisia and sand from salt field and therefore achieve a detailed classification of the coastal area characteristics.
Originality/value
This research proposed an integrated classification method for coastal ecological land with polarimetric SAR and optical data. The object-based and decision-level fusion enables effective ecological land classification in coastal area was verified.
Details
Keywords
Fangmin Cheng, Chen Chen, Yuhong Zhang and Suihuai Yu
Cloud manufacturing platform has a high degree of openness, with a large variety of users having different needs. Designers on such platforms exhibit great differences in their…
Abstract
Purpose
Cloud manufacturing platform has a high degree of openness, with a large variety of users having different needs. Designers on such platforms exhibit great differences in their knowledge abilities and knowledge needs, necessitating the cloud platform to provide personalized knowledge recommendation. To satisfy the personalized knowledge needs of the designers in product design tasks and other manufacturing tasks on a cloud manufacturing platform and provide them with high-quality knowledge resources, a knowledge recommendation method based on designers’ knowledge ability is proposed. The proposed method, with appropriate adjustments, can also be used for personalized knowledge recommendation to other personnel or institutions in cloud manufacturing platforms.
Design/methodology/approach
A knowledge recommendation method model is developed. The method consists of three stages. First, a designer knowledge system is constructed based on customer reviews in historical tasks, and designer knowledge ability and knowledge demand degree are quantitatively evaluated by synthesizing customer reviews and expert evaluations. Subsequently, the design knowledge domain ontology is constructed, and knowledge resources and tasks are modeled based on the ontology. Finally, the semantic similarity between tasks and knowledge resources and the knowledge demand degree of designers are integrated to calculate the knowledge recommendation coefficient, which realizes the personalized knowledge recommendation of designers.
Findings
Two design tasks of a 3D printing cloud platform are taken as examples to verify the feasibility and effectiveness of the proposed method. Compared with other methods, it is proved that the method proposed in this paper can obtain more knowledge resources that meet the needs of designers and tasks.
Originality/value
The method proposed in this paper is important for the expansion of data applications of the cloud manufacturing platform and for enriching the knowledge recommendation method. The proposed method has two innovations. First, both designer needs and task needs are considered in knowledge recommendation. Compared with most of the existing methods, which only consider one factor, this method is more comprehensive. Second, the designer’s knowledge ability model is constructed by using customer reviews on the cloud manufacturing platform. This overcomes the defect of low accuracy of the interest model in existing methods and makes full use of the big data of the cloud manufacturing platform.
Details
Keywords
Souhil Mouassa and Tarek Bouktir
In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single…
Abstract
Purpose
In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims to minimize simultaneously either the active power losses and voltage stability index, or the active power losses and the voltage deviation. The purpose of this paper is to propose multi-objective ant lion optimization (MOALO) algorithm to solve multi-objective ORPD problem considering large-scale power system in an effort to achieve a good performance with stable and secure operation of electric power systems.
Design/methodology/approach
A MOALO algorithm is presented and applied to solve the MOORPD problem. Fuzzy set theory was implemented to identify the best compromise solution from the set of the non-dominated solutions. A comparison with enhanced version of multi-objective particle swarm optimization (MOEPSO) algorithm and original (MOPSO) algorithm confirms the solutions. An in-depth analysis on the findings was conducted and the feasibility of solutions were fully verified and discussed.
Findings
Three test systems – the IEEE 30-bus, IEEE 57-bus and large-scale IEEE 300-bus – were used to examine the efficiency of the proposed algorithm. The findings obtained amply confirmed the superiority of the proposed approach over the multi-objective enhanced PSO and basic version of MOPSO. In addition to that, the algorithm is benefitted from good distributions of the non-dominated solutions and also guarantees the feasibility of solutions.
Originality/value
The proposed algorithm is applied to solve three versions of ORPD problem, active power losses, voltage deviation and voltage stability index, considering large -scale power system IEEE 300 bus.
Details
Keywords
Srishti Sharma and Mala Saraswat
The purpose of this research study is to improve sentiment analysis (SA) at the aspect level, which is accomplished through two independent goals of aspect term and opinion…
Abstract
Purpose
The purpose of this research study is to improve sentiment analysis (SA) at the aspect level, which is accomplished through two independent goals of aspect term and opinion extraction and subsequent sentiment classification.
Design/methodology/approach
The proposed architecture uses neighborhood and dependency tree-based relations for target opinion extraction, a domain–ontology-based knowledge management system for aspect term extraction, and deep learning techniques for classification.
Findings
The authors use different deep learning architectures to test the proposed approach of both review and aspect levels. It is reported that Vanilla recurrent neural network has an accuracy of 83.22%, long short-term memory (LSTM) is 89.87% accurate, Bi-LSTM is 91.57% accurate, gated recurrent unit is 65.57% accurate and convolutional neural network is 82.33% accurate. For the aspect level analysis, ρaspect comes out to be 0.712 and Δ2aspect is 0.384, indicating a marked improvement over previously reported results.
Originality/value
This study suggests a novel method for aspect-based SA that makes use of deep learning and domain ontologies. The use of domain ontologies allows for enhanced aspect identification, and the use of deep learning algorithms enhances the accuracy of the SA task.
Details
Keywords
Jun Liu, Sike Hu, Fuad Mehraliyev, Haiyue Zhou, Yunyun Yu and Luyu Yang
This study aims to establish a model for rapid and accurate emotion recognition in restaurant online reviews, thus advancing the literature and providing practical insights into…
Abstract
Purpose
This study aims to establish a model for rapid and accurate emotion recognition in restaurant online reviews, thus advancing the literature and providing practical insights into electronic word-of-mouth management for the industry.
Design/methodology/approach
This study elaborates a hybrid model that integrates deep learning (DL) and a sentiment lexicon (SL) and compares it to five other models, including SL, random forest (RF), naïve Bayes, support vector machine (SVM) and a DL model, for the task of emotion recognition in restaurant online reviews. These models are trained and tested using 652,348 online reviews from 548 restaurants.
Findings
The hybrid approach performs well for valence-based emotion and discrete emotion recognition and is highly applicable for mining online reviews in a restaurant setting. The performances of SL and RF are inferior when it comes to recognizing discrete emotions. The DL method and SVM can perform satisfactorily in the valence-based emotion recognition.
Research limitations/implications
These findings provide methodological and theoretical implications; thus, they advance the current state of knowledge on emotion recognition in restaurant online reviews. The results also provide practical insights into intelligent service quality monitoring and electronic word-of-mouth management for the industry.
Originality/value
This study proposes a superior model for emotion recognition in restaurant online reviews. The methodological framework and steps are elucidated in detail for future research and practical application. This study also details the performances of other commonly used models to support the selection of methods in research and practical applications.
Details
Keywords
Yixuan Kang, Yanyan Ma and Fusheng Wang
With growing evidence of financial misconduct spreading through director networks, research on financial fraud contagion has garnered significant attention. This study…
Abstract
Purpose
With growing evidence of financial misconduct spreading through director networks, research on financial fraud contagion has garnered significant attention. This study incorporates the regulatory enforcement perspective into existing literature to examine how regulatory penalties mitigate financial fraud contagion within director networks.
Design/methodology/approach
This study uses a panel dataset of A-share listed Chinese firms covering 2007–2022. Based on the nature of the dataset, we construct ordinary least squares regression models with firm- and year-fixed effects. Data are collected from the China Stock Market and Accounting Research, Wind Information Co., Ltd and China Research Data Services. We use Python to scrape the coordinates of regulators and firms and retrieve travel distances from the Baidu Maps API.
Findings
This study verifies the existence of financial fraud contagion in director networks. Our findings indicate that regulatory penalties can mitigate the contagion between director-interlocked firms, improving accounting quality. Moreover, the mitigation effects are mediated by independent directors’ dissent and auditors’ efforts at director-interlocked firms and are more pronounced when these firms have superior network centrality and internal control quality.
Originality/value
This study enriches the literature on financial fraud contagion by examining director networks and regulatory penalties. We propose mediating effects of auditor effort and director dissents on the relationship between regulatory penalties and financial fraud contagion. Our findings provide insights for regulators to alleviate pressures and highlight the importance for directors to consider financial risks within their networks.
Details
Keywords
Yanyan Pu, Zongchao Yu, Fengqin Wang, Yiyuan Fu, Tao Yan and Honglin Cheng
The purpose of this study is to develop luminescence sensors for the detection of nitroaromatic compounds (NACs) and metal ions to protect human health and prevent environmental…
Abstract
Purpose
The purpose of this study is to develop luminescence sensors for the detection of nitroaromatic compounds (NACs) and metal ions to protect human health and prevent environmental pollution.
Design/methodology/approach
The composition and morphology of Eu-metal-organic frameworks (MOF) (1) were well characterized by powder X-ray diffraction, elemental analyses, Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and scanning electron microscopy. The emission spectrum displays that 1 has significant characteristic emission bands of Eu(III) ions. The authors further investigated the fluorescence sensing performances of 1 to NACs and metal ions.
Findings
The results show that Eu-MOF (1) exhibits significant fluorescence quenching effect toward p-nitroaniline and Fe3+ ions with good stability and recyclability. This means that 1 can be used as a multifunctional sensing material for the detection of p-nitroaniline and Fe3+ ions.
Originality/value
The authors have successfully synthesized a fluorescence Eu-based sensing material under hydrothermal conditions. In addition, the fluorescence property and sensing performances for detecting NACs and metal ions were studied. The results suggest that 1 has highly selective fluorescence quenching toward p-nitroaniline and Fe3+ ions with not only high sensitivity and selectivity but also excellent stability and recyclability. Furthermore, this study has confirmed that the multifunctional MOF material is very useful in environment pollutants’ detection and monitoring.
Details
Keywords
Ismael Gómez-Talal, Pilar Talón-Ballestero, Veronica Leoni and Lydia González-Serrano
This study aims to examine how dynamic pricing impacts customer perceptions of restaurants and sentiment toward prices via online reputation metrics. In addition, to deepen the…
Abstract
Purpose
This study aims to examine how dynamic pricing impacts customer perceptions of restaurants and sentiment toward prices via online reputation metrics. In addition, to deepen the debate on dynamic pricing, a novel definition is drawn by exploring the specific forms of discrimination that can manifest in different industries.
Design/methodology/approach
Leveraging a comprehensive data set of restaurant reviews sourced from TripAdvisor, the study focuses on restaurants affiliated with one of the largest groups of restaurants in Spain. We used a quasi-experimental method (difference-in-differences), to study how dynamic pricing strategies influence customers’ perceptions of value based on numerical ratings. Meanwhile, we used a Bidirectional Encoder Representations from Transformers model on the textual component of reviews to dissect the emotional nuances of dynamic pricing.
Findings
Results did not reveal a causal impact of dynamic pricing strategies on customers’ perceptions. Moreover, the sentiment analysis shows no heightened negative view after introducing dynamic pricing in restaurants compared to the control group. Contrary to what previous literature suggests, our findings indicate that implementing dynamic pricing does not adversely affect customers’ perceptions or sentiments regarding prices in restaurants.
Research limitations/implications
The quasi-experimental setting of the study presents inherent challenges in establishing causality that require further investigation using controlled experimental settings. Nevertheless, our study reveals that restaurant customers do not perceive dynamic pricing as unfair. This finding is critical for restaurant managers when considering the implementation of dynamic pricing and revenue management strategies. In addition, our study highlights the importance of considering not only numerical ratings but customer sentiment analysis as well. This more holistic approach to assessing the impact of pricing strategies can give restaurant managers a deeper understanding of customer reactions. In addition, a more rigorous definition of dynamic pricing is provided, clarifying its nature and its distinction in using different price discrimination.
Originality/value
This study contributes to the evolving understanding of dynamic pricing strategies’ impact on customers’ perceptions and sentiments in the restaurant industry. It aims to fill the gap in understanding customer reactions to algorithmically determined prices (via revenue management systems such as DynamEat) in this industry. The combination of causal inference and sentiment analysis offers a novel perspective, shedding light on the nuanced connections between dynamic pricing implementation and customers’ emotions.
目的
本研究考察动态定价如何通过在线声誉指标影响顾客对餐厅的感知和对价格的情绪。此外, 为了深化对动态定价的讨论, 通过探索不同行业中可能表现出的具体歧视形式, 提出了一个新的定义。
设计/方法/途径
利用从TripAdvisor获取的餐厅评论的全面数据集, 研究聚焦于与西班牙最大的餐厅集团之一相关联的餐厅。我们采用了准实验方法(差异中的差异), 研究动态定价策略如何根据数值评分影响顾客对价值的感知。同时, 我们运用BERT模型对评论的文本成分进行分析, 以解析动态定价的情感细微差别。
发现
结果没有揭示动态定价策略对顾客感知产生因果影响。此外, 情绪分析显示, 在餐厅引入动态定价后, 与对照组相比, 没有增加消极观点。与以往文献所述相反, 我们的发现表明, 实施动态定价并不会对顾客对价格的感知或情绪产生负面影响。
研究限制/含义
研究的准实验设置存在确立因果关系的固有挑战, 需要通过控制实验设置进一步调查。尽管如此, 我们的研究揭示了餐厅顾客不认为动态定价不公平。这一发现对餐厅经理在考虑实施动态定价和收入管理策略时至关重要。此外, 我们的研究强调, 考虑顾客情绪分析和数值评分的重要性。这种更全面的方法评估定价策略的影响, 可以让餐厅经理更深入地理解顾客反应。此外, 提供了一个更严格的动态定价定义, 澄清了其性质及其在使用不同价格歧视中的区别。
原创性/价值
本研究对于理解动态定价策略对餐厅行业顾客感知和情绪影响的不断发展有所贡献。它旨在填补对客户对算法确定的价格(通过收入管理系统(RMS)例如DynamEat)在此行业中反应的理解空白。因果推断与情绪分析的结合提供了新的视角, 揭示了动态定价实施与顾客情绪之间微妙的联系。
Propósito
Este estudio examina cómo la fijación dinámica de precios impacta en las percepciones de los clientes de los restaurantes y en el sentimiento hacia los precios a través de métricas de reputación en línea. Además, para profundizar en el debate sobre la fijación dinámica de precios, se propone una definición novedosa explorando las formas específicas de discriminación que pueden manifestarse en diferentes industrias.
Diseño/metodología/enfoque
Utilizando un conjunto de datos exhaustivo de reseñas de restaurantes obtenidas de TripAdvisor, el estudio se centra en los restaurantes afiliados a uno de los mayores grupos de restaurantes en España. Empleamos un método cuasiexperimental (diferencias en diferencias) para estudiar cómo las estrategias de precios dinámicos influyen en las percepciones de valor de los clientes basándonos en las calificaciones numéricas. Mientras tanto, empleamos un modelo BERT en el componente textual de las reseñas para desentrañar los matices emocionales de la fijación dinámica de precios.
Hallazgos
Los resultados no revelaron un impacto causal de las estrategias de precios dinámicos en las percepciones de los clientes. Además, el análisis de sentimiento no muestra una visión negativa aumentada después de introducir la fijación dinámica de precios en los restaurantes en comparación con el grupo de control. Contrariamente a lo que sugiere la literatura previa, nuestros hallazgos indican que la implementación de precios dinámicos no afecta negativamente las percepciones o los sentimientos de los clientes respecto a los precios en los restaurantes.
Limitaciones/implicaciones de la investigación
La configuración cuasiexperimental del estudio presenta desafíos inherentes para establecer la causalidad que requieren una investigación más profunda utilizando entornos experimentales controlados. Sin embargo, nuestro estudio revela que los clientes de restaurantes no perciben la fijación de precios dinámica como injusta. Este hallazgo es crítico para los gerentes de restaurantes al considerar la implementación de la fijación de precios dinámica y estrategias de gestión de ingresos. Además, nuestro estudio resalta la importancia de considerar no solo las calificaciones numéricas sino también el análisis del sentimiento del cliente. Este enfoque más holístico para evaluar el impacto de las estrategias de precios puede dar a los gerentes de restaurantes una comprensión más profunda de las reacciones de los clientes. Además, se proporciona una definición de fijación de precios dinámica más rigurosa, aclarando su naturaleza y su distinción en el uso de diferentes discriminaciones de precios.
Originalidad/valor
Este estudio contribuye a la comprensión en evolución del impacto de las estrategias de fijación de precios dinámicos en las percepciones y sentimientos de los clientes en la industria restaurantera. Su objetivo es llenar el vacío en la comprensión de las reacciones de los clientes a los precios determinados algorítmicamente (a través de sistemas de gestión de ingresos (RMS) como DynamEat) en esta industria. La combinación de inferencia causal y análisis de sentimientos ofrece una perspectiva novedosa, arrojando luz sobre las conexiones matizadas entre la implementación de la fijación de precios dinámicos y las emociones de los clientes.
Details
Keywords
Omar Alqaryouti, Nur Siyam, Azza Abdel Monem and Khaled Shaalan
Digital resources such as smart applications reviews and online feedback information are important sources to seek customers’ feedback and input. This paper aims to help…
Abstract
Digital resources such as smart applications reviews and online feedback information are important sources to seek customers’ feedback and input. This paper aims to help government entities gain insights on the needs and expectations of their customers. Towards this end, we propose an aspect-based sentiment analysis hybrid approach that integrates domain lexicons and rules to analyse the entities smart apps reviews. The proposed model aims to extract the important aspects from the reviews and classify the corresponding sentiments. This approach adopts language processing techniques, rules, and lexicons to address several sentiment analysis challenges, and produce summarized results. According to the reported results, the aspect extraction accuracy improves significantly when the implicit aspects are considered. Also, the integrated classification model outperforms the lexicon-based baseline and the other rules combinations by 5% in terms of Accuracy on average. Also, when using the same dataset, the proposed approach outperforms machine learning approaches that uses support vector machine (SVM). However, using these lexicons and rules as input features to the SVM model has achieved higher accuracy than other SVM models.