Search results

1 – 5 of 5
Article
Publication date: 15 October 2020

Enbo Li, Haibo Feng, Yanwu Zhai, Zhou Haitao, Li Xu and Yili Fu

One of the development trends of robots is to enable robots to have the ability of anthropomorphic manipulation. Grasping is the first step of manipulation. For mobile manipulator…

Abstract

Purpose

One of the development trends of robots is to enable robots to have the ability of anthropomorphic manipulation. Grasping is the first step of manipulation. For mobile manipulator robots, grasping a target during the movement process is extremely challenging, which requires the robots to make rapid motion planning for arms under uncertain dynamic disturbances. However, there are many situations require robots to grasp a target quickly while they move, such as emergency rescue. The purpose of this paper is to propose a method for target dynamic grasping during the movement of a robot.

Design/methodology/approach

An off-line learning from demonstrations method is applied to learn a basic reach model for arm and a motion model for fingers. An on-line dynamic adjustment method of arm speed for active and passive grasping mode is designed.

Findings

The experimental results of the robot movement on flat, slope and speed bumps ground show that the proposed method can effectively solve the problem of fast planning under uncertain disturbances caused by robot movement. The method performs well in the task of target dynamic grasping during the robot movement.

Originality/value

The main contribution of this paper is to propose a method to solve the problem of rapid motion planning of the robot arm under uncertain disturbances while the robot is grasping a target in the process of robot movement. The proposed method significantly improves the grasping efficiency of the robot in emergency situations. Experimental results show that the proposed method can effectively solve the problem.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 February 2022

Yanwu Zhai, Haibo Feng, Haitao Zhou, Songyuan Zhang and Yili Fu

This paper aims to propose a method to solve the problem of localization and mapping of a two-wheeled inverted pendulum (TWIP) robot on the ground using the Stereo–inertial…

Abstract

Purpose

This paper aims to propose a method to solve the problem of localization and mapping of a two-wheeled inverted pendulum (TWIP) robot on the ground using the Stereo–inertial measurement unit (IMU) system. This method reparametrizes the pose according to the motion characteristics of TWIP and considers the impact of uneven ground on vision and IMU, which is more adaptable to the real environment.

Design/methodology/approach

When TWIP moves, it is constrained by the ground and swings back and forth to maintain balance. Therefore, the authors parameterize the robot pose as SE(2) pose plus pitch according to the motion characteristics of TWIP. However, the authors do not omit disturbances in other directions but perform error modeling, which is integrated into the visual constraints and IMU pre-integration constraints as an error term. Finally, the authors analyze the influence of the error term on the vision and IMU constraints during the optimization process. Compared to traditional algorithms, the algorithm is simpler and better adapt to the real environment.

Findings

The results of indoor and outdoor experiments show that, for the TWIP robot, the method has better positioning accuracy and robustness compared with the state-of-the-art.

Originality/value

The algorithm in this paper is proposed for the localization and mapping of a TWIP robot. Different from the traditional positioning method on SE(3), this paper parameterizes the robot pose as SE(2) pose plus pitch according to the motion of TWIP and the motion disturbances in other directions are integrated into visual constraints and IMU pre-integration constraints as error terms, which simplifies the optimization parameters, better adapts to the real environment and improves the accuracy of positioning.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 December 2021

Yanwu Zhai, Haibo Feng and Yili Fu

This paper aims to present a pipeline to progressively deal with the online external parameter calibration and estimator initialization of the Stereo-inertial measurement unit…

Abstract

Purpose

This paper aims to present a pipeline to progressively deal with the online external parameter calibration and estimator initialization of the Stereo-inertial measurement unit (IMU) system, which does not require any prior information and is suitable for system initialization in a variety of environments.

Design/methodology/approach

Before calibration and initialization, a modified stereo tracking method is adopted to obtain a motion pose, which provides prerequisites for the next three steps. Firstly, the authors align the pose obtained with the IMU measurements and linearly calculate the rough external parameters and gravity vector to provide initial values for the next optimization. Secondly, the authors fix the pose obtained by the vision and restore the external and inertial parameters of the system by optimizing the pre-integration of the IMU. Thirdly, the result of the previous step is used to perform visual-inertial joint optimization to further refine the external and inertial parameters.

Findings

The results of public data set experiments and actual experiments show that this method has better accuracy and robustness compared with the state of-the-art.

Originality/value

This method improves the accuracy of external parameters calibration and initialization and prevents the system from falling into a local minimum. Different from the traditional method of solving inertial navigation parameters separately, in this paper, all inertial navigation parameters are solved at one time, and the results of the previous step are used as the seed for the next optimization, and gradually solve the external inertial navigation parameters from coarse to fine, which avoids falling into a local minimum, reduces the number of iterations during optimization and improves the efficiency of the system.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 June 2018

Haibo Feng, Yanwu Zhai and Yili Fu

Surgical robot systems have been used in single-port laparoscopy (SPL) surgery to improve patient outcomes. This study aims to develop a vision robot system for SPL surgery to…

Abstract

Purpose

Surgical robot systems have been used in single-port laparoscopy (SPL) surgery to improve patient outcomes. This study aims to develop a vision robot system for SPL surgery to effectively improve the visualization of surgical robot systems for relatively complex surgical procedures.

Design/methodology/approach

In this paper, a new master-slave magnetic anchoring vision robotic system for SPL surgery was proposed. A lighting distribution analysis for the imaging unit of the vision robot was carried out to guarantee illumination uniformity in the workspace during SPL surgery. Moreover, cleaning force for the lens of the camera was measured to assess safety for an abdominal wall, and performance assessment of the system was performed.

Findings

Extensive experimental results for illumination, control, cleaning force and functionality test have indicated that the proposed system has an excellent performance in providing the visual feedback.

Originality/value

The main contribution of this paper lies in the development of a magnetic anchoring vision robot system that successfully improves the ability of cleaning the lens and avoiding the blind area in a field of view.

Details

Industrial Robot: An International Journal, vol. 45 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 February 2023

Yanqing Fang, Shang Gao, Yanwu Jiang and Shuquan Li

Building information modelling (BIM), lean construction (LC) and prefabricated housing construction (PHC) have individually aroused great attention from academia and industry…

782

Abstract

Purpose

Building information modelling (BIM), lean construction (LC) and prefabricated housing construction (PHC) have individually aroused great attention from academia and industry. However, the integration of LC and BIM in PHC projects has not been sufficiently explored. This study aims to assess the current status of the implementation of BIM and LC in China’s PHC sector given, firstly, that China is a developing country characterised by the world’s largest population and a huge housing market, and secondly, that although China’s PHC is strongly supported by the government, the adoption of BIM and LC in PHC varies.

Design/methodology/approach

A mixed approach (questionnaire survey and interviews) is adopted in this study. A total of 127 valid questionnaires were collected. This is followed by interviewing 12 interviewees who are key stakeholders in PHC and hold managerial positions.

Findings

The findings of the questionnaire survey show that BIM is more prevalent than LC in PHC projects in China. In addition, the adoption of LC exhibits more maturity in stages associated with production and manufacturing, and logistics and transportation, whereas BIM has seen wider adoption in design and construction. The interviews validated the factors that influence the implementation of BIM and LC in PHC projects in China.

Originality/value

The study uses a strengths, weaknesses, opportunities and threats analysis framework to clarify the opportunities, threats, strengths and weaknesses of BIM and LC in China’s PHC and proposes strategies.

Details

International Journal of Lean Six Sigma, vol. 14 no. 7
Type: Research Article
ISSN: 2040-4166

Keywords

1 – 5 of 5