Tao Peng, Xingliang Liu, Rui Fang, Ronghui Zhang, Yanwei Pang, Tao Wang and Yike Tong
This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.
Abstract
Purpose
This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.
Design/methodology/approach
The authors proposed a novel safety lane-change path planning and tracking control method for articulated vehicles. A double-Gaussian distribution was introduced to deduce the lane-change trajectories of tractor and trailer coupling characteristics of intelligent vehicles and roads. With different steering and braking maneuvers, minimum safe distances were modeled and calculated. Considering safety and ergonomics, the authors invested multilevel self-driving modes that serve as the basis of decision-making for vehicle lane-change. Furthermore, a combined controller was designed by feedback linearization and single-point preview optimization to ensure the path tracking and robust stability. Specialized hardware in the loop simulation platform was built to verify the effectiveness of the designed method.
Findings
The numerical simulation results demonstrated the path-planning model feasibility and controller-combined decision mechanism effectiveness to self-driving trucks. The proposed trajectory model could provide safety lane-change path planning, and the designed controller could ensure good tracking and robust stability for the closed-loop nonlinear system.
Originality/value
This is a fundamental research of intelligent local path planning and automatic control for articulated vehicles. There are two main contributions: the first is a more quantifiable trajectory model for self-driving articulated vehicles, which provides the opportunity to adapt vehicle and scene changes. The second involves designing a feedback linearization controller, combined with a multi-objective decision-making mode, to improve the comprehensive performance of intelligent vehicles. This study provides a valuable reference to develop advanced driving assistant system and intelligent control systems for self-driving articulated vehicles.
Details
Keywords
H. Abd El-Wahab, G. El-Meligi, M.G. Hassaan, A. Kazlauciunas and Long Lin
The purpose of this paper is to prepare, characterise and evaluate nano-emulsions of copolymers of various compositions as eco-friendly binders for flexographic ink industry.
Abstract
Purpose
The purpose of this paper is to prepare, characterise and evaluate nano-emulsions of copolymers of various compositions as eco-friendly binders for flexographic ink industry.
Design/methodology/approach
Various nano-emulsions of copolymers were prepared using styrene (St), butyl acrylate (BuAc), acrylic acid (AA) and acrylamide (AAm) monomers by means of a conventional seeded emulsion polymerisation technique, using K2S2O8 as the initiator. The characterisation of the prepared emulsions was performed using Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), gel permeation chromatography (GPC) and transmission electron microscopy (TEM). A selection of copolymers was formulated with pigments and additional ingredients, as water-based flexographic inks. The inks were characterised for their viscosity, pH, degree of dispersion, water resistance and colour density.
Findings
It was found that the low viscosity of the prepared copolymers may reduce the film thickness of the flexographic inks and may also increase the spreading of the ink on the surface. As a result, stable modified polyacrylate-based latex with improved physico-mechanical properties were obtained. The prepared latexes were showed improving and enhancing in water resistance; gloss values, and the print density that ranged from 2.06 to 2.51 and the maximum gloss values (39 and 48) were also obtained. Also, these binders provide excellent adhesion properties for both the pigment particles and the base paper.
Practical implications
This study focuses on the preparation of new water-based copolymer nanoparticles and their use as eco-friendly binders for flexographic ink industry.
Social implications
The ink formulations developed could find use in industrial-scale printing.
Originality/value
Eco-friendly environment ink formulations for printing on paper substrates are novel.