Search results
1 – 2 of 2Yanwei Dai, Libo Zhao, Fei Qin and Si Chen
This study aims to characterize the mechanical properties of sintered nano-silver under various sintering processes by nano-indentation tests.
Abstract
Purpose
This study aims to characterize the mechanical properties of sintered nano-silver under various sintering processes by nano-indentation tests.
Design/methodology/approach
Through microstructure observations and characterization, the influences of sintering process on the microstructure evolutions of sintered nano-silver were presented. And, the indentation load, indentation displacement curves of sintered silver under various sintering processes were measured by using nano-indentation test. Based on the nano-indentation test, a reverse analysis of the finite element calculation was used to determine the yielding stress and hardening exponent.
Findings
The porosity decreases with the increase of the sintering temperature, while the average particle size of sintered nano-silver increases with the increase of sintering temperature and sintering time. In addition, the porosity reduced from 34.88%, 30.52%, to 25.04% if the ramp rate was decreased from 25°C/min, 15°C/min, to 5°C/min, respectively. The particle size appears more frequently within 1 µm and 2 µm under the lower ramp rate. With reverse analysis, the strain hardening exponent gradually heightened with the increase of temperature, while the yielding stress value decreased significantly with the increase of temperature. When the sintering time increased, the strain hardening exponent increased slightly.
Practical implications
The mechanical properties of sintered nano-silver under different sintering processes are clearly understood.
Originality/value
This paper could provide a novel perspective on understanding the sintering process effects on the mechanical properties of sintered nano-silver.
Details
Keywords
H. Abd El-Wahab, G. El-Meligi, M.G. Hassaan, A. Kazlauciunas and Long Lin
The purpose of this paper is to prepare, characterise and evaluate nano-emulsions of copolymers of various compositions as eco-friendly binders for flexographic ink industry.
Abstract
Purpose
The purpose of this paper is to prepare, characterise and evaluate nano-emulsions of copolymers of various compositions as eco-friendly binders for flexographic ink industry.
Design/methodology/approach
Various nano-emulsions of copolymers were prepared using styrene (St), butyl acrylate (BuAc), acrylic acid (AA) and acrylamide (AAm) monomers by means of a conventional seeded emulsion polymerisation technique, using K2S2O8 as the initiator. The characterisation of the prepared emulsions was performed using Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), gel permeation chromatography (GPC) and transmission electron microscopy (TEM). A selection of copolymers was formulated with pigments and additional ingredients, as water-based flexographic inks. The inks were characterised for their viscosity, pH, degree of dispersion, water resistance and colour density.
Findings
It was found that the low viscosity of the prepared copolymers may reduce the film thickness of the flexographic inks and may also increase the spreading of the ink on the surface. As a result, stable modified polyacrylate-based latex with improved physico-mechanical properties were obtained. The prepared latexes were showed improving and enhancing in water resistance; gloss values, and the print density that ranged from 2.06 to 2.51 and the maximum gloss values (39 and 48) were also obtained. Also, these binders provide excellent adhesion properties for both the pigment particles and the base paper.
Practical implications
This study focuses on the preparation of new water-based copolymer nanoparticles and their use as eco-friendly binders for flexographic ink industry.
Social implications
The ink formulations developed could find use in industrial-scale printing.
Originality/value
Eco-friendly environment ink formulations for printing on paper substrates are novel.
Details