Yuanwei Liu, Bin Wang, Yan Xie, Yu Chen, Zhongnian Yang, Guojun Han and Yanqiu Dang
The purpose of this paper is to prepare a dual-encapsulated halloysite nano-container to release the capsuled inhibitor as an additive for corrosion protection of epoxy coating.
Abstract
Purpose
The purpose of this paper is to prepare a dual-encapsulated halloysite nano-container to release the capsuled inhibitor as an additive for corrosion protection of epoxy coating.
Design/methodology/approach
Halloysite nano-containers (HNT) were prepared by simultaneously implanting inhibitor benzotriazole (BTA) into the inside and outside of the halloysite using reduced pressure and layer-by-layer (LBL) assembly, respectively. The microstructure and morphology of treated HNT were investigated using Fourier transform infrared spectroscopy and transmission electron microscopy. In addition, the anti-corrosion behaviors of the composite polyepoxy coating with inhibitor-loaded nano-containers BTA@HNT-2 were investigated using the electrochemical impedance spectroscopy and neutral salt spray test.
Findings
Test results showed that the LBL assembly structure of the halloysite nano-container makes the BTA@HNT-2 nano-container be controlled and sustained to release BTA, relying on the pH. Very importantly, the obtained nano-container is also responsive to temperature, owing to the thermosensitivity polyelectrolyte out-shell of the HNT. The result showed Rct of the composite polyepoxy coating can be sufficient to maintain higher than 8.510E+7 Ω·cm2 over 72 h of immersion test. Moreover, the artificial induced defects on the coating surface were sufficiently inhibited in the presence of BTA@HNT-2 nano-container in the polyepoxy coating.
Originality/value
Use of the BTA@HNT-2 as corrosion inhibitor nano-container, with good anti-corrosion property and dual-responsive to pH and temperature, offers a significant rout to prepare smart anti-corrosion coating for protecting metal substrate.
Details
Keywords
Yang Liu, Jialing Wang, Huayang Cai, Yawei Shao, Zhengyi Xu, Yanqiu Wang and Junyi Wang
Epoxy zinc-rich coatings are widely used in harsh environments because of the long-lasting cathodic protection of steel surfaces. The purpose of this paper is to use flake zinc…
Abstract
Purpose
Epoxy zinc-rich coatings are widely used in harsh environments because of the long-lasting cathodic protection of steel surfaces. The purpose of this paper is to use flake zinc powder instead of the commonly used spherical zinc powder to reduce the zinc powder content.
Design/methodology/approach
In this paper, the authors have prepared an anticorrosive zinc-rich coating using a flake zinc powder instead of the conventional spherical zinc powder. The optimal dispersion of scaly zinc powder in zinc-rich coatings has been explored by looking at the surface and cross-sectional morphology and studying the cathodic protection time of the coating.
Findings
The final epoxy zinc-rich coating with 35 Wt.% flake zinc powder content was prepared using sand-milling dispersions. It has a similar cathodic protection time and salt spray resistance as the 60 Wt.% spherical zinc-rich coating, with a higher low-frequency impedance modulus value.
Originality/value
This study uses flake zinc powder instead of the traditional spherical zinc powder. This reduces the amount of zinc powder in the coating and improves the corrosion resistance of the coating.
Details
Keywords
Yang Liu, Qian Zhang, Jialing Wang, Yawei Shao, Zhengyi Xu, Yanqiu Wang and Junyi Wang
The purpose of this paper is to enhance the compatibility of titanium dioxide in epoxy resins and thus the corrosion resistance of the coatings.
Abstract
Purpose
The purpose of this paper is to enhance the compatibility of titanium dioxide in epoxy resins and thus the corrosion resistance of the coatings.
Design/methodology/approach
In this work, TiO2 was modified by the mechanochemistry method where mechanical energy was combined with thermal energy to complete the modification. The stability of modified TiO2 in epoxy was analyzed by sedimentation experiment. The modified TiO2-epoxy coating was prepared, and the corrosion resistance of the coating was analyzed by open circuit potential, electrochemical impedance spectroscopy and neutral salt spray test.
Findings
High-temperature mechanical modification can improve the compatibility of TiO2 in epoxy resin. At the same time, the modified TiO2-epoxy coating showed better corrosion resistance. Compared to the unmodified TiO2-epoxy coating, the coating improved the dry adhesion force by 61.7% and the adhesion drop by 33.3%. After 2,300 h of immersion in 3.5 Wt.% NaCl solution, the coating resistance of the modified TiO2 coating was enhanced by nearly two orders of magnitude compared to the unmodified coating.
Originality/value
The authors have grafted epoxy molecules onto TiO2 surfaces using a high-temperature mechanical force modification method. The compatibility of TiO2 with epoxy resin is enhanced, resulting in improved adhesion of the coating to the substrate and corrosion resistance of the coating.
Details
Keywords
Xiangbin Liu, Fandi Meng, Ruiping Liu, Junlin Kou, Zeyang Zhang, Jianrong Feng, Li Liu and Fuhui Wang
The marine environment presents a great challenge to the anticorrosion properties of organic coatings applied on equipment. Since the compactness of coatings is critical in marine…
Abstract
Purpose
The marine environment presents a great challenge to the anticorrosion properties of organic coatings applied on equipment. Since the compactness of coatings is critical in marine environments, a novel nepheline-epoxy resin (N-EP) composite was introduced into organic coatings to improve the interfacial compatibility between the pigments and the binder. The purpose of this study is to evaluate the effectiveness of the N-EP composite in enhancing the corrosion resistance of the coatings in marine conditions.
Design/methodology/approach
These composite particles were prepared via the mechanical ball milling method at thermofield-assisted, leading to chemical bonding between inorganic nepheline and epoxy resin, the agglomeration of particles was avoided by this method. Fourier transform infrared spectroscopy, transmission electron microscope, particle size distribution, sedimentation and thermogravimetric-differential thermal analysis were used to verify the feasibility of thermal field-assisted mechanochemistry for achieving a direct reaction between epoxy resin and nepheline powder, as well as to determine the optimal reaction conditions. Additionally, water absorption tests, Electrochemical impedance spectroscopy and scanning electron microscope were conducted to assess the anticorrosive properties of the modified nepheline coatings.
Findings
The results further indicated that N-EP improved the barrier performance and mechanical properties of the coating. For example, after modified, the tensile strength of coating had increased from 41.96 ± 0.05–63.14 ± 0.05 MPa. This can be attributed to the less defective N-EP/binder interface and the uniform dispersion of N-EP in the coating. The optimal preparation conditions (500 r/min of ball grinding speed and 6 h of ball grinding time) for the composites were also studied for a superior corrosion resistance of the coating.
Originality/value
Thermofield-assisted mechanochemistry enables direct reactions between epoxy resin and nepheline powder, enhancing the dispersion stability and interfacial compatibility of N-EP. This modification improves coating compactness, reduces porosity and enhances corrosion resistance by strengthening the labyrinth effect on water diffusion.