Search results
1 – 2 of 2Concrete arch structures are commonly constructed for various civil engineering applications. Despite their frequent use, there is a lack of research on the response and…
Abstract
Purpose
Concrete arch structures are commonly constructed for various civil engineering applications. Despite their frequent use, there is a lack of research on the response and performance of concrete arches when subjected to fire loading. Hence, this paper aims to investigate the response and in-plane failure modes of shallow circular concrete arches subjected to mechanical and fire loading.
Design/methodology/approach
This study is conducted through the development of a three-dimensional finite element (FE) model in ANSYS. The FE model is verified by comparison to a non-discretisation numerical model derived herein and the reduced modulus buckling theory, both used for the non-linear inelastic analysis of shallow concrete arches subjected to uniformly distributed radial loading and uniform temperature field. Both anti-symmetric and symmetric buckling modes are examined, with analysis of the former requiring geometric imperfection obtained by an eigenvalue buckling analysis.
Findings
The FE results show that anti-symmetric bifurcation buckling is the dominant failure mode in shallow concrete arches under mechanical and fire loading. Additionally, parametric studies are presented which illustrate the influence of various parameters on fire resistance time.
Originality/value
Fire response of concrete arches has not been reported in the open literature. The authors have previously investigated the stability of shallow concrete arches subjected to mechanical and uniform thermal loading. It was found that temperature greatly reduced the buckling loads of concrete arches. However, this study was limited to the simplifying assumptions made which include elastic material behaviour and uniform temperature loading. The present study provides a realistic insight into the fire response and stability of shallow concrete arches. The findings herein may be adopted in the fire design of shallow concrete arches.
Details
Keywords
Malindu Sasanka Sandanayake, Zora Vrcelj, Yanni Bouras, Hing-Wah Chau and Patrick Hastings
The present study aims to inform the requirements for developing a sustainable rating tool for small-scale infrastructure projects (SSIPs) through research findings.
Abstract
Purpose
The present study aims to inform the requirements for developing a sustainable rating tool for small-scale infrastructure projects (SSIPs) through research findings.
Design/methodology/approach
A review-based comparative study of existing infrastructure sustainability (IS) rating tools for assessment of SSIPs is presented. Key stakeholder participants of the existing IS rating tools, are interviewed to identify existing barriers and requirements for sustainability rating. The study further presents possible rating tool options to optimise the sustainable performance evaluation of SSIPs.
Findings
Findings of this study indicated that prevalent IS rating tools are majorly applied to large-scale infrastructure projects and sustainability of SSIPs are seldom assessed. Based on a literature review and series of interviews, it was found that user friendliness, efficient structure, training and technical support, cost effectiveness and stakeholder recognition are the five key requirements of a sustainability rating tool for SSIPs. Additionally, six sustainability assessment options were proposed for SSIPs which range from pathways for existing tools through to new, customisable tools. Upon comparison, a new modified tool with verification process and revised tool with defined grouping of sustainable criteria was more effective for evaluation of SSIPs.
Research limitations/implications
Use of case specific information for validation and framework development may lack generalisation. However, methodology can be used for future decision-making by making necessary adjustments to suit different local regional requirements.
Originality/value
Despite lack of generalisation, the findings can lead to future general studies on sustainability of SSIPs. Findings of the study provide foundation knowledge and awareness for sustainability evaluation of SSIPs.
Details