Yan‐bin Yuan, Ya‐qiong Zhu, You Zhou, N.R. Sælthun, Wei Cui and Jiejun Huang
The purpose of this paper is to extract the characterized mineralization information from large numbers of data obtained from geologic exploration based on rough set; analyze the…
Abstract
Purpose
The purpose of this paper is to extract the characterized mineralization information from large numbers of data obtained from geologic exploration based on rough set; analyze the inherent relation between mineral information genes and metallogenic probability, and offer the scientific basis for target prediction.
Design/methodology/approach
Mineral information includes all kinds of relative metallogenic information. In order to extract comprehensive metallogenic prediction information, it is necessary to filter initial observation information to emphasize the factors that are most advantageous to metallogenic prognosis. Rough set can delete irrespective or unimportant attributes on the premises of no information missing and no classification ability changing, without supplementary information or prior knowledge, which has important theoretic and practical value for metallogenic prognosis.
Findings
The association and importance of geological information referring to prospecting are found out through attribute reduction based on rough set.
Originality/value
The analysis of geological and mineral information based on rough set is a novel approach for high‐dimensional complex non‐deterministic polynomial problems which are predominant in geological research. The research successfully extracts characterized mineralization information to offer the scientific basis for target prediction.